

Introduction to PanelPro - Logix™

Intro to Logix™

Indirect layout control (PP-clinic-3)

Dick Bronson - R R -C irK its, Inc.

Logix™

Why LogiX?
When Dave Duchamp first started adding a graphical logic package to JMRI

we wondered about what to call it. “Logic” seemed to be a logical name
for logic, but Dave had already added 'Lights' as a function, therefore 'L'
was no longer available as an item name, so he just used 'X' instead. The
logic function was 'Internal' to JMRI, so its system name was 'I'. This
means the the proper identifier for the logic function became 'IX' and we
jokingly started calling them Logix in our e-mail discussions because of
the 'IX'. The name has stuck.

Logix are functionally similar to industrial ladder logic in that they do not
have any parenthetical structure. Therefore there is no logical 'OR'
function. To do an OR you simply create multiple different Logix for each
different conditional, or else invert the sense of items and use the 'NOT
AND' instead.

Logix

Indirect Layout Control

Indirect Layout Control
In our previous clinic we simply tied our active icons directly to the layout

commands that we needed to send. This is no more sophisticated that
drilling some holes in a piece of Masonite, spray painting some lines,
mounting some switches and lamps, and then connecting them to our
switch machines. Granted a computer can usually be found for not very
much money, but a few switches or push buttons, a chopped up string of
Christmas tree lights, and some paint would be cheaper.

On the prototype railroads it is not allowable to have remote control of
turnouts without some fairly reliable method of knowing the position of
the points and preventing them from ever being changed while a train is
crossing them. (or about to) Now that we mention it, these are pretty
good things to do for our models as well, even if the life hazard is less.
(not counting what might happen to the dispatcher when he accidentally
sends that new brass onto the floor through that place with no scenery)

All this to say, maybe just flipping a turnout with a remote switch isn't the
best idea after all, especially if you can't see it from the panel.

Layout control

Indirect Layout Control

Indirect Layout Control

Fixed images

● First lets load in the basic
panel background we made in
clinic #1 then rename it and
save it as clinic #3

Indirect Layout Control

Indirect Layout Control

Fixed images

● First lets load in the basic
panel background we made in
clinic #1 then rename it and
save it as clinic #3

● You will be expected to know
how to do the basic operations
already covered in previous
sessions, so I am not going to
repeat the detail of each
operation as we move along.

Indirect Layout Control

Indirect Layout Control

Fixed images

● First lets load in the basic
panel background we made in
clinic #1 then rename it and
save it as clinic #3

● You will be expected to know
how to do the basic operations
already covered in previous
sessions, so I am not going to
repeat the detail of each
operation as we move along.

● Navigate to the 'proto' folder
where we have a set of images
created from photographs of an
original (unrestored) classic era
prototype US&S CTC machine.

Indirect Layout Control

Indirect Layout Control

Fixed images

● First lets load in the basic
panel background we made in
clinic #1 then rename it and
save it as clinic #3

● You will be expected to know
how to do the basic operations
already covered in previous
sessions, so I am not going to
repeat the detail of each
operation as we move along.

● Navigate to the 'proto' folder
where we have a set of images
created from photographs of an
original (unrestored) classic era
prototype US&S CTC machine.

● These few images are not
designed for animation, but for
making a more realistic panel.

Indirect Layout Control

Indirect Layout Control

Fixed images

● Use the 'Add icon:' button to
add two left (sw-l.gif) and two
right (sw-r.gif) turnout icons to
our panel.

Indirect Layout Control

Indirect Layout Control

Fixed images

● Use the 'Add icon:' button to
add two left (sw-l.gif) and two
right (sw-r.gif) turnout icons to
our panel.

● These images only face in one
direction, so they will need to
be rotated for our use on this
panel. Right click (meta for
Mac) to bring up the tools, then
click on 'Rotate' to rotate 90°.

Indirect Layout Control

Indirect Layout Control

Fixed images

● Use the 'Add icon:' button to
add two left (sw-l.gif) and two
right (sw-r.gif) turnout icons to
our panel.

● These images only face in one
direction, so they will need to
be rotated for our use on this
panel. Right click (meta for
Mac) to bring up the tools, then
click on 'Rotate' to rotate 90°.

● Each icon is 'rotated' twice to
face up, and then positioned on
the panel.

Indirect Layout Control

Indirect Layout Control

Fixed images

● Use the 'Add icon:' button to
add two left (sw-l.gif) and two
right (sw-r.gif) turnout icons to
our panel.

● These images only face in one
direction, so they will need to
be rotated for our use on this
panel. Right click (meta for
Mac) to bring up the tools, then
click on 'Rotate' to rotate 90°.

● Each icon is 'rotated' twice to
face up, and then positioned on
the panel.

● Add in some straight track
images (block.gif) and we have
our basic track plan drawn.

Indirect Layout Control

Occupancy sensors

Sensor images

● One of the 'rules' we have for
remote operation is that we do
not throw a switch under a
train. To accomplish that we
need to know when a train is on
the switch or 'OS' (On Switch)
section. (OS can mean other
things such as 'On Sheet')

Indirect Layout Control

Occupancy sensors

Sensor images

● One of the 'rules' we have for
remote operation is that we do
not throw a switch under a
train. To accomplish that we
need to know when a train is on
the switch or 'OS' (On Switch)
section. (OS can mean other
things such as 'On Sheet')

● In clinic 2 we added active
icons for our turnouts. Now we
will do the same for our
occupancy sensors. Start by
changing the icons.

Indirect Layout Control

Occupancy sensors

Sensor images

● One of the 'rules' we have for
remote operation is that we do
not throw a switch under a
train. To accomplish that we
need to know when a train is on
the switch or 'OS' (On Switch)
section. (OS can mean other
things such as 'On Sheet')

● In clinic 2 we added active
icons for our turnouts. Now we
will do the same for our
occupancy sensors. Start by
changing the icon images.

● Navigate to 'resources' – 'icons'
– 'USS' – 'sensor'. Many
railroads used red indicator
lamp jewels for the OS
sections. We will do the same.

Indirect Layout Control

Occupancy sensors

Sensor images

● Add sensors LS2, LS6, LS9, and
LS13. (LS = LocoNet Sensor)

Indirect Layout Control

Occupancy sensors

Sensor images

● Add sensors LS2, LS6, LS9, and
LS13. (LS = LocoNet Sensor)

● This piles our images in the
usual place.

Indirect Layout Control

Occupancy sensors

Sensor images

● Add sensors LS2, LS6, LS9, and
LS13. (LS = LocoNet Sensor)

● This piles our images in the
usual place.

● Move them down into their
proper track locations.

Indirect Layout Control

Occupancy sensors

Sensor images

● Add sensors LS2, LS6, LS9, and
LS13. (LS = LocoNet Sensor)

● This piles our images in the
usual place.

● Move them down into their
proper track locations.

● Normally we would 'disable' the
sensor images so that they
would only respond to our
occupancy detectors. However
we don't actually have any
sensors attached, so we will
simulate detection by clicking
on our images to activate them.

Indirect Layout Control

Internal sensors

Sensor images

● Our next concept is that of
'Internal' sensors. These are
really just single bit memory
devices. They react with the
images just as if they were
hardware, but only exist
internally to JMRI.

Indirect Layout Control

Internal sensors

Sensor images

● Our next concept is that of
'Internal' sensors. These are
really just single bit memory
devices. They react with the
images just as if they were
hardware, but only exist
internally to JMRI.

● We need some levers that are
not directly attached to the
turnouts like we did originally.

Indirect Layout Control

Internal sensors

Sensor images

● Our next concept is that of
'Internal' sensors. These are
really just single bit memory
devices. They react with the
images just as if they were
hardware, but only exist
internally to JMRI.

● We need some levers that are
not directly attached to the
turnouts like we did originally.

● This time we will use the lever
images for our sensors.

Indirect Layout Control

Internal sensors

Sensor images

● Our next concept is that of
'Internal' sensors. These are
really just single bit memory
devices. They react with the
images just as if they were
hardware, but only exist
internally to JMRI.

● We need some levers that are
not directly attached to the
turnouts like we did originally.

● This time we will use the lever
images for our sensors.

● Add sensors named IS5, IS7,
IS9, and IS11 to match our
plate numbers.

Indirect Layout Control

Internal sensors

Sensor images

● Our next concept is that of
'Internal' sensors. These are
really just single bit memory
devices. They react with the
images just as if they were
hardware, but only exist
internally to JMRI.

● We need some levers that are
not directly attached to the
turnouts like we did originally.

● This time we will use the lever
images for our sensors.

● Add sensors named IS5, IS7,
IS9, and IS11 to match our
plate numbers.

● As before, move the new icons
into their proper locations.

Indirect Layout Control

Internal sensors

Sensor images

● Now we have some levers that
are not directly connected to
the layout. We can flip them by
simply by clicking on them.

Indirect Layout Control

Internal sensors

Sensor images

● Now we have some levers that
are not directly connected to
the layout. We can flip them by
simply by clicking on them.

● The prototype CTC panel did
not directly connect the lever
to the switch machine. The
operator moved a lever and
then pressed a 'Send Code'
button that encoded and sent
the commands over the track
side wires in a serial format
using short and long pulses. (I
bet you thought DCC was a
new concept)

Indirect Layout Control

Internal sensors

Sensor images

● Now we have some levers that
are not directly connected to
the layout. We can flip them by
simply by clicking on them.

● The prototype CTC panel did
not directly connect the lever
to the switch machine. The
operator moved a lever and
then pressed a 'Send Code'
button that encoded and sent
the commands over the track
side wires in a serial format
using short and long pulses. (I
bet you thought DCC was a
new concept)

● Change our icons to the 'code'
button images.

Indirect Layout Control

Internal sensor names

Sensor names

● When it comes to naming our
new buttons we hit a snag. We
already used IS5. We could use
IS6, but what about the lever
for the signals in the next
clinic? Maybe we should use a
more descriptive name. We are
not attaching to real hardware,
so any name is allowed. I chose
'IS:P6:CB'. Normally system
generated names use the “:”
and user names should not. The
plan is that a tool will generate
these names, so I use that as an
excuse for including the “:”.

IS = Internal Sensor,
:P6 = Plant 6,
:CB = Code Button.

Indirect Layout Control

Internal sensor names

Sensor names

● Add 'IS:P6:CB', 'IS:P8:CB',
'IS:P10:CB', and 'IS:P12:CB' for
our new buttons.

● Actually the code button was
normally at the bottom of each
column of switches and levers.
However that is off the bottom
of this portion of our image, so
I cheated and placed the
buttons here. You should do it
right and reserve these for
'maintenance call' or 'call on'
switches or lamps.

Indirect Layout Control

Internal sensor names

Sensor names

● Add 'IS:P6:CB', 'IS:P8:CB',
'IS:P10:CB', and 'IS:P12:CB' for
our new buttons.

● Actually the code button was
normally at the bottom of each
column of switches and levers.
However that is off the bottom
of this portion of our image, so
I cheated and placed the
buttons here. You should do it
right and reserve these for
'maintenance call' or 'call on'
switches or lamps.

● Clicking on these images
reveals that the first click
pushes the button and the next
click releases it. The actual
code button is a spring return.

Indirect Layout Control

Internal sensor names

Sensor names

● To solve the 'momentary'
problem by simply right
clicking on each icon to bring
up its tools, then check the box
called 'Momentary'. Further
testing will show that the
buttons will now directly follow
your mouse clicks. Note, if the
button pops up when you click
on it, you have simply reversed
the images. To correct them
change the image icons and re-
enter the buttons.

Indirect Layout Control

Internal sensor names

Sensor names

● To solve the 'momentary'
problem by simply right
clicking on each icon to bring
up its tools, then check the box
called 'Momentary'. Further
testing will show that the
buttons will now directly follow
your mouse clicks. Note, if the
button pops up when you click
on it, you have simply reversed
the images.

● While we are correcting things
lets also use some better names
for the levers. I used IS:S5:CL.

IS = Internal Sensor,
:S5 = Switch 5,
:CL = Control Lever.

'Remove' the originals and add
in the new replacements.

Indirect Layout Control

Turnout Feedback

Turnout Feedback

● We still need some way to tell
which position the layout track
switches are aligned. The
levers and track image are not
available, so we will use the
indicator lamps. (just as they
were intended)

Indirect Layout Control

Turnout Feedback

Turnout Feedback

● We still need some way to tell
which position the layout track
switches are aligned. The
levers and track image are not
available, so we will use the
indicator lamps. (just as they
were intended)

● Change our turnout icons to be
green jewels. Note: Use the
'green-off.gif' for the
'Inconsistent:' position.

Indirect Layout Control

Turnout Feedback

Turnout Feedback

● We still need some way to tell
which position the layout track
switches are aligned. The
levers and track image are not
available, so we will use the
indicator lamps. (just as they
were intended)

● Change our turnout icons to be
green jewels. Note: Use the
'green-off.gif' for the
'Inconsistent:' position.

● Add LT1, LT2, LT3, and LT4.

Indirect Layout Control

Turnout Feedback

Turnout Feedback

● We still need some way to tell
which position the layout track
switches are aligned. The
levers and track image are not
available, so we will use the
indicator lamps. (just as they
were intended)

● Change our turnout icons to be
green jewels. Note: Use the
'green-off.gif' for the
'Inconsistent:' position.

● Add LT1, LT2, LT3, and LT4.
● Move them into place on the 'N'

(Normal) side of the plates.

Indirect Layout Control

Turnout Feedback

Turnout Feedback

● We still need some way to tell
which position the layout track
switches are aligned. The
levers and track image are not
available, so we will use the
indicator lamps. (just as they
were intended)

● Change our turnout icons to be
green jewels. Note: Use the
'green-off.gif' for the
'Inconsistent:' position.

● Add LT1, LT2, LT3, and LT4.
● Move them into place on the 'N'

(Normal) side of the plates.
● Change the jewel colors to

amber and do the same for the
'Reverse' lamps. (remember
'Thrown' is lit for them)

Indirect Layout Control

Logix

Logix

● We now have all our required
inputs and outputs on the
panel. All that is missing is the
logic to make it work. Our first
example will be simple:

If the Control Lever is changed
And the OS is NOT occupied
And the Code Button is pressed
Then send a turnout command.

Indirect Layout Control

Logix

Logix

● We now have all our required
inputs and outputs on the
panel. All that is missing is the
logic to make it work. Our first
example will be simple:

If the Control Lever is changed
And the OS is NOT occupied
And the Code Button is pressed
Then send a turnout command.

● To open the Logix tools
navigate from the main window
via 'Tools' – 'Tables' – 'Logix'.

Indirect Layout Control

Logix

Logix

● We now have all our required
inputs and outputs on the
panel. All that is missing is the
logic to make it work. Our first
example will be simple:

If the Control Lever is changed
And the OS is NOT occupied
And the Code Button is pressed
Then send a turnout command.

● To open the Logix tools
navigate from the main window
via 'Tools' – 'Tables' – 'Logix'.

● This brings up an empty Logix
table.

Indirect Layout Control

Logix

Logix

● We now have all our required
inputs and outputs on the
panel. All that is missing is the
logic to make it work. Our first
example will be simple:

If the Control Lever is changed
And the OS is NOT occupied
And the Code Button is pressed
Then send a turnout command.

● To open the Logix tools
navigate from the main window
via 'Tools' – 'Tables' – 'Logix'.

● This brings up an empty Logix
table.

● Click on 'Add ...' to create a
new Logix entry.

Indirect Layout Control

Logix

Logix

● We now have all our required
inputs and outputs on the
panel. All that is missing is the
logic to make it work. Our first
example will be simple:

If the Control Lever is changed
And the OS is NOT occupied
And the Code Button is pressed
Then send a turnout command.

● To open the Logix tools
navigate from the main window
via 'Tools' – 'Tables' – 'Logix'.

● This brings up an empty Logix
table.

● Click on 'Add ...' to create a
new Logix entry.

● Fill in the required information.

Indirect Layout Control

Logix naming

Logix naming

● The first information will be the
ID. Logix are internal so the
system name is 'I'. The item
name is 'X', so they will start
with 'IX'.

Indirect Layout Control

Logix naming

Logix naming

● The first information will be the
ID. Logix are internal so the
system name is 'I'. The item
name is 'X', so they will start
with 'IX'.

● I will call it IX:S5:SC

IX = Internal LogiX,
:S5 = Switch 5,
:SC = Switch Control.

Indirect Layout Control

Logix naming

Logix naming

● The first information will be the
ID. Logix are internal so the
system name is 'I'. The item
name is 'X', so they will always
start with 'IX'.

● Lets call it IX:S5:SC

IX = Internal LogiX,
:S5 = Switch 5,
:SC = Switch Control.

● The 'Logix User Name' may be
any description we choose to
use. 'Switch 5 Control' for
example.

Indirect Layout Control

Logix naming

Logix naming

● The first information will be the
ID. Logix are internal so the
system name is 'I'. The item
name is 'X', so they will always
start with 'IX'.

● Lets call it IX:S5:SC

IX = Internal LogiX,
:S5 = Switch 5,
:SC = Switch Control.

● The 'Logix User Name' may be
any description we choose to
use. 'Switch 5 Control' for
example.

● Once we have named our new
creation click on 'Create Logix'
to add it to the table and bring
up a blank entry window.

Indirect Layout Control

Logix entry

Logix entry

● New table entry.

Indirect Layout Control

Logix entry

Logix entry

● New table entry.
● Edit Logix window.

Indirect Layout Control

Logix entry

Logix entry

● New table entry.
● Edit Logix window.
● Each Logix will contain one or

more 'Conditionals' or things
that may be true or false. A
'Conditional' may optionally do
one or two actions when it
becomes true or becomes false
or simply changes state.

Indirect Layout Control

Logix entry

Logix entry

● New table entry.
● Edit Logix window.
● Each Logix will contain one or

more 'Conditionals' or things
that may be true or false. A
'Conditional' may optionally do
one or two actions when it
becomes true or becomes false
or simply changes state.

● Click the 'New Conditional'
button to bring up the 'Edit
Conditional' window.

Indirect Layout Control

Logix entry

Logix entry

● New table entry.
● Edit Logix window.
● Each Logix will contain one or

more 'Conditionals' or things
that may be true or false. A
'Conditional' may optionally do
one or two actions when it
becomes true or becomes false
or simply changes state.

● Click the 'New Conditional'
button to bring up the 'Edit
Conditional' window.

● Note that JMRI
automatically
added 'C1' to the
name we gave
this item.

Indirect Layout Control

Logix entry

Logix entry

● We will create two
conditionals, one to
throw switch 5 and
one to close it.
Name this first one
“Switch 5 Normal”.

Indirect Layout Control

Logix entry

Logix entry

● We will create two
conditionals, one to
throw switch 5 and
one to close it.
Name this first one
“Switch 5 Normal”.

● We call the various
items that will be
checked 'Variables'
because they vary
between one value
and another. In this
case between being
true and being
false. Click here to
add our first one.

Indirect Layout Control

Logix entry

Logix entry

● Click in the variable
box to call up a list
of possible options.
Choose 'Sensor
Inactive' because
we don't want this
to happen if a train
is on the OS.

Indirect Layout Control

Logix entry

Logix entry

● Click in the variable
box to call up a list
of possible options.
Choose 'Sensor
Inactive' because
we don't want this
action to happen if
a train is on the OS.

● Enter the OS sensor
ID. In this case it is
'LS2'.

Indirect Layout Control

Logix entry

Logix entry

● Click in the variable
box to call up a list
of possible options.
Choose 'Sensor
Inactive' because
we don't want this
action to happen if
a train is on the OS.

● Enter the OS sensor
ID. In this case it is
'LS2'.

● Click on 'Check
State Variables' to
let the system read
the newly added
sensor item.

Indirect Layout Control

Logix entry

Logix entry

● Click in the variable
box to call up a list
of possible options.
Choose 'Sensor
Inactive' because
we don't want this
action to happen if
a train is on the OS.

● Enter the OS sensor
ID. In this case it is
'LS2'.

● Click on 'Check
State Variables' to
let the system read
the newly added
sensor item.

● Note that it is False.

Indirect Layout Control

Logix entry

Logix entry

● Add the second
variable for the
lever. (IS:S5:CL)

Indirect Layout Control

Logix entry

Logix entry

● Add the second
variable for the
lever. (IS:S5:CL)

● It is 'Active' when in
the 'N' (Normal)
position.

Indirect Layout Control

Logix entry

Logix entry

● Add the second
variable for the
lever. (IS:S5:CL)

● It is 'Active' when in
the 'N' (Normal)
position.

● We only want to
send a command if
the turnout is NOT
already in position.
This is not the same
as being 'Thrown'
because it could be
moving or unknown.

Indirect Layout Control

Logix entry

Logix entry

● Add the second
variable for the
lever. (IS:S5:CL)

● It is 'Active' when in
the 'N' (Normal)
position.

● We only want to
send a command if
the turnout is NOT
already in position.
This is not the same
as being 'Thrown'
because it could be
moving or unknown.

● A state check shows
that 'Not closed' is
'False' because it is
closed. (not not)

Indirect Layout Control

Logix entry

Logix entry

● Now add our code
button.

Indirect Layout Control

Logix entry

Logix entry

● Now add our code
button.

● Note: If we attempt
to check the state
before moving out
of the entry box we
will get an error.

Indirect Layout Control

Logix entry

Logix entry

● Now add our code
button.

● Note: If we attempt
to check the state
before moving out
of the entry box we
will get an error.

● Simply click in the
state column box
first then check it.

Indirect Layout Control

Logix entry

Logix entry

● Now add our code
button.

● Note: If we attempt
to check the state
before moving out
of the entry box we
will get an error.

● Simply click in the
state column box
first then check it.

● As you can see we
have piled up many
reasons that we will
not send a turnout
command at this
time, even if we do
press the button.

Indirect Layout Control

Logix entry

Logix entry

● Change the turnout
to reverse and move
the train. (click on
the icons)

Indirect Layout Control

Logix entry

Logix entry

● Change the turnout
to reverse and move
the train. (click on
the icons)

● Now a check of the
states shows that
only the button
press is False.

Indirect Layout Control

Logix entry

Logix entry

● Change the turnout
to reverse and move
the train. (click on
the icons)

● Now a check of the
states shows that
only the button
press is False.

● Actually the button
press is the only
item we want to
attempt to trigger
the conditional, so
uncheck the others.

Indirect Layout Control

Logix entry

Logix entry

● Change the turnout
to reverse and move
the train. (click on
the icons)

● Now a check of the
states shows that
only the button
press is False.

● Actually the button
press is the only
item we want to
attempt to trigger
the conditional, so
uncheck the others.

● Now we choose our
action. Select 'Set
Turnout'.

Indirect Layout Control

Logix entry

Logix entry

● This gives us a new
box and selection to
enter the turnout ID
and desired action.

Indirect Layout Control

Logix entry

Logix entry

● This gives us a new
box and selection to
enter the turnout ID
and desired action.

● Enter LT1 as the ID
and the action is
already defaulted to
'Closed'.

Indirect Layout Control

Logix entry

Logix entry

● This gives us a new
box and selection to
enter the turnout ID
and desired action.

● Enter LT1 as the ID
and the action is
already defaulted to
'Closed'.

● When you are done
click on 'Update
Conditional'. Unlike
images, Logix will
not operate until
they are closed.

Indirect Layout Control

Logix entry

Logix entry

● This gives us a new
box and selection to
enter the turnout ID
and desired action.

● Enter LT1 as the ID
and the action is
already defaulted to
'Closed'.

● When you are done
click on 'Update
Conditional'. Unlike
images, Logix will
not operate until
they are closed.

● Click 'Done' to close

Indirect Layout Control

Logix entry

Logix entry

● This gives us a new
box and selection to
enter the turnout ID
and desired action.

● Enter LT1 as the ID
and the action is
already defaulted to
'Closed'.

● When you are done
click on 'Update
Conditional'. Unlike
images, Logix will
not operate until
they are closed.

● Click 'Done' to close
● Saved Panels will

include their Logix.

Indirect Layout Control

Logix entry

Logix entry

● Clicking on our
Code Button should
now throw our
turnout to 'N', but
only if the OS is
clear.

Indirect Layout Control

Logix entry

Logix entry

● Clicking on our
Code Button should
now throw our
turnout to 'N', but
only if the OS is
clear.

● The first test only
shows the button
moving because the
OS is still occupied.

Indirect Layout Control

Logix entry

Logix entry

● Clicking on our
Code Button should
now throw our
turnout to 'N', but
only if the OS is
clear.

● The first test only
shows the button
moving because the
OS is still occupied.

● Try it again after
moving the train.

Indirect Layout Control

Logix entry

Logix entry

● Clicking on our
Code Button should
now throw our
turnout to 'N', but
only if the OS is
clear.

● The first test only
shows the button
moving because the
OS is still occupied.

● Try it again after
moving the train.

● This time it worked
as it should.

Indirect Layout Control

Logix entry

Logix entry

● Clicking on our
Code Button should
now throw our
turnout to 'N', but
only if the OS is
clear.

● The first test only
shows the button
moving because the
OS is still occupied.

● Try it again after
moving the train.

● This time it worked
as it should.

● Now click on the
'Edit' button to open
up our Logix again.

Indirect Layout Control

Logix entry

Logix entry

● Add a conditional
and name it 'Switch
5 Reverse'

Indirect Layout Control

Logix entry

Logix entry

● Add a conditional
and name it 'Switch
5 Reverse'

● The Variables will
be similar to those
we used for switch
'Normal', except for
the different modes.

Indirect Layout Control

Logix entry

Logix entry

● Add a conditional
and name it 'Switch
5 Reverse'

● The Variables will
be similar to those
we used for switch
'Normal', except for
the different modes.

● Note these three
differences due to
the inverted logic
required to move
the turnout in the
opposite direction.

Indirect Layout Control

Logix entry

Logix entry

● Add a conditional
and name it 'Switch
5 Reverse'

● The Variables will
be similar to those
we used for switch
'Normal', except for
the different modes.

● Note these three
differences due to
the inverted logic
required to move
the turnout in the
opposite direction.

● Update the entry.

Indirect Layout Control

Logix entry

Logix entry

● Add a conditional
and name it 'Switch
5 Reverse'

● The Variables will
be similar to those
we used for switch
'Normal', except for
the different modes.

● Note these three
differences due to
the inverted logic
required to move
the turnout in the
opposite direction.

● Update the entry.
● New item shown.

Indirect Layout Control

Logix entry

Logix entry

● Add a conditional
and name it 'Switch
5 Reverse'

● The Variables will
be similar to those
we used for switch
'Normal', except for
the different modes.

● Note these three
differences due to
the inverted logic
required to move
the turnout in the
opposite direction.

● Update the entry.
● New item shown.
● Click Done.

Indirect Layout Control

Logix entry

Logix entry

● Now change the
lever.

Indirect Layout Control

Logix entry

Logix entry

● Now change the
lever.

● Push the Code
Button.

Indirect Layout Control

Logix entry

Logix entry

● Now change the
lever.

● Push the Code
Button.

● And Our turnout
changes.

Indirect Layout Control

Logix entry

Logix entry

● Now change the
lever.

● Push the Code
Button.

● And Our turnout
changes.

● But not if the OS
shows occupied.

Indirect Layout Control

Logix entry

Logix entry

● Now change the
lever.

● Push the Code
Button.

● And Our turnout
changes.

● But not if the OS
shows occupied.

● Save our work.

Indirect Layout Control

Logix entry

Logix entry

● Now change the
lever.

● Push the Code
Button.

● And Our turnout
changes.

● But not if the OS
shows occupied.

● Save our work.
● As Clinic-3.xml

Introduction to PanelPro

This completes Clinic 3. In the next session we
will talk about how we may manually edit the
Panel.xml file to easily duplicate our Switch 5
Logix to extend it to Switches 7, 9, and 11.

The remainder of the next clinic will cover basic
ABS signaling using SSL. (Simple Signal Logic)

These clinic files will be available at our web site.
http://www.rr-cirkits.com/Clinics/Clinics.html
Versions from previous years clinics are also

available there for your convenience.

http://www.rr-cirkits.com/Clinics/Clinics.html

