

MER 2021
Mount Clare Junction

LCC for the Rest of Us - Overview
(Layout Command & Control)

Presented by: Dick Bronson
RR-CirKits, Inc.

LCC for the Rest of Us.
Part 1 (overview)

www.rr-cirkits.com/clinics/MER-2021-Signaling with LCC-A.pdf
Part 2 (details)

www.rr-cirkits.com/clinics/MER-2021-Signaling with LCC-B.pdf

What is LCC?
LCC is an information highway

for your model railroad layout

What is LCC?
 LCC is a common language for layout

elements to talk to each other

● Signals
● Turnouts
● Detectors
● Lights
● Panels
● PCs / Smart Phones

● Boosters
● Command Stations
● Throttles
● Power Managers
● Trains
● etc…

What is LCC NOT?

LCC does NOT replace DCC.
On the track – DCC

Beside the track – LCC

LCC is not dependent on DCC,

can run on DC or Märklin layouts

not locked to the DCC manufacturer

Why LCC?

 The critical role of software and its importance to
our hobby, both now and for years to come,
cannot be overstated. Our new digital world and
its eventual successors will underpin much of our
future innovations across a wide range of
technological advancements.

 The ability of LCC nodes to be quickly and easily
upgraded over the bus without the need to return
them to the manufacturer, purchase replacement
chips, or to even access them physically is a key
new benefit.

Why LCC?

 Last week it was said on the NCE list that
LCC was a solution looking for a problem.

 That is true, but it actuallypoints out the
problem. We have LocoNet, CMRI,
XpressNet, MERG, plus other proprietary
methods to connect our devices.

 Not one of these can connect to another.
(except via JMRI and a central computer)

Why LCC?

 Many of us simply use the DCC itself to control
devices. That has its own problems.

 First and most restricting, DCC is a one way street.
Has anyone here ever seen a DCC connected
block detector, fascia control button, turnout
position feedback contact, or any other input?

 Second, DCC does have a fixed, limited,
bandwidth. Control traffic competes with the
repetitive locomotive control information. This is
probably not an issue on a 4x8 class layout, but
not a good basis for expansion over the next 20-
30 years.

Why LCC?

 DCC is a Master–Slave system. This means that
there is really no practical way for more than a
single command station to control any given
layout.

 DCC has a fixed address space. This was seen to be
sufficient in the 20th century when it was
designed, but today folks run into the limits, and
tomorrow requires looking for new tools.

 A single LCC node has a larger address space than
many DCC systems can muster.

 What about CMRI, XpressNet, MERG,
plus the LocoNet and other proprietary
methods used to connect our devices?

 Most of these solutions originated due to
the difficulty in using the DCC bus for
any input information.

 Some are Master–Slave and others have
limited accessibility due to licensing.

Other Options

 The NMRA decided a number of years
ago to sponsor an open (license free)
method to interface to your layout. The
intent was that, like the NMRA DCC
standards, many manufacturers would
be able to build layout accessory
products that will interchange as freely
as is now true for DCC mobile
decoders.

A solution is proposed

 The bus must use license free commercial standards
for its communications as much as is possible.

 It should be robust and viable even into the next
generation of electronic products.

 It should be a peer-peer design with no
requirements for any central control station.

 Any two devices from any manufacturers must be
able to directly exchange data with each other.

 The Open LCB group was chosen to develop this.

A solution is proposed

 The result was a set of protocols that can be sent
over any media. For example, EtherNet, Wi-Fi,
CAN (Control Area Network), and others. (some
say tin cans and string, but don’t believe it)

 The NMRA calls this Open LCB standard LCC.
Layout Command and Control. LCC is NOT a
replacement for DCC. (unless you consider it
replacing DCC accessory decoders)

 LCC can run along side of DCC, AC, DC, DCS,
TMCC, RailPro, Battery power, etc. It is not a
way to power your trains, it is a way to control
your entire layout.

●LCC Vocabulary

First lets explain some LCC terms to eliminate any
mystery.

Message protocol – With a wire we normally carry
the state of something by putting a voltage on the
wire. If a switch is closed it supplies power to a
lamp, or things like that. We model railroaders all
understand that. With a message based protocol we
no longer place a voltage on the wire. Instead we
send two (at least) messages over the wire.

One message says ‘the switch just closed’, and
another message says ‘the switch just opened’. For a
single switch this is way too complicated. However
by allowing many messages you can send
information about many different switches over that
same wire. I have visited layouts with wrist sized
cables coming from a control panel, each carrying
information about one switch or one lamp. By using
a message protocol that same panel could have been
connected using just a few wires.

 Node – A device that connects to an LCC network
and interacts with it. The RR-CirKits Tower LCC
is a node. The LCC Buffer-USB is not a node
because it simply passes information from the
network to a computer. However the computer
then becomes a node because it is now connected
to the network and interacts with it. For example,
a node is what changes a switch closure into a
message, or a message into a voltage change to
light a LED or control a turnout.

 Node ID – The Node ID is a unique 48 bit address
used to identify each LCC node. This allows up
to 16,777,215 nodes per manufacturer x 254
NMRA listed manufacturers, and is expandable
to individuals and other groups such as non-
NMRA manufacturers.

 Bus – The method by which one node connects to
another node. One common LCC bus is the CAN
bus used in automobiles and aircraft carriers.
However LCC may also use Wi-Fi or Ethernet as
its bus. (tin cans and string have not been tried,
but probably will not work)

 CDI – Configuration Description Information.
This includes both the description of what the
node does, and any settings that you may have
configured in it. The CDI is actually saved in the
node itself, not some computer program or file.

 Producer – Some item that produces an EventID in
response to some event on the layout.

 Consumer – Some item that responds to
(consumes) an EventID to do something on the
layout. Note: Normally the same EventID is used
as both producer and consumer based on
viewpoint.

 Event – Anything that happens or should happen
on your layout.

 EventID – A message used by the LCC to IDentify
some Event that happens on your layout. These
EventIDs are simply unique numbers sent over
the bus to represent an event. (these are the
numbers that we are going to ignore in this
article)

 Globally Unique EventID – A message number
that it large enough to guarantee that it is unique
in the world.

 Yes, we once heard that in 1981 Bill Gates
allegedly said that 640K was more than enough
memory space. (but he denies ever having said
that) Suffice it to say, you are not going to run out
of unique message numbers on your layout. (or
even all the layouts in the world even counting G
scale)

Why use such large
Numbers?

Maybe you have already guessed that LCC has a theoretical
message address space larger than the US national debt
expressed in pennies. If that is true, (and it is) then how can
anyone possibly understand it or keep track of them. Fortunately
the answer to that question is; the very reason that the address
space is so large in the first place is so that we don’t need to
assign and keep track of these numbers at all.

Because the message (EventID) numbers used by LCC are
‘Globally Unique’, no two messages that we will ever find in

use on one LCC system will be the same as those found on
any other system unless we make it so.

That actually solves a huge issue right at the start. Unlike any
legacy model railroad control systems, there is no reason that we
ever need to assign and keep track of these numbers ourselves in
order to avoid potential conflicts. Conflicts will never happen in
the first place. How much modeler’s time is spent keeping track
of cab numbers or loco numbers to prevent conflicts on our
layouts, or even worse in our clubs where folks come and go.

If you have been doing turnout control or signaling using DCC
then you already know that you have even more accessory
address numbers to keep track of. Probably in your modular
group there is one person in charge of assigning address ranges
to cabs, modules, and individual club members, all of this work
is simply to avoid potential conflicts.

With LCC that member can spend his time building scenery or
running trains, rather than assigning and keeping track of
random numbers.

You may say; “OK if we need so many message ID numbers to
prevent any possible conflicts, how can I possibly set things up
without ever using them?” The answer to that question is actually
pretty simple. As humans we give names to things. I live in a town
called Waxhaw in NC. Its ZIP code is 28173. If you were to ask me;
“Where do you live?” what would you expect me to say? I could
answer “Waxhaw”, or I could answer “28173”, as technically both

are correct. However, if I actually did say “28173” you would
probably look at me funny and step back to give me some more
space. However, a mail sorting machine in Chicago does not look at
the word “Waxhaw” in my address, because it is meaningless
information to a sorting machine in Chicago,

 even though there is no other town in the US (or probably the
world) named Waxhaw. It reads the “28173” portion of the
address and routes it onto a mail truck bound for 28--- which

carries it off to North Carolina, and eventually to Waxhaw.

It is the same thing with LCC. The electronics needs to see a
unique number, but you as the layout owner only want to see
“CP 106 Catskill North - diverging” or “Block 27.1
occupied” or however you like to identify things on your own
layout. You have spent many hours creating the “Catskill”
passing siding with its control points 105 and 106, so you will
remember where it is. If the turnout is called 12414 or MT14,
then maybe not so much.

LCC Basic Concepts

 One of the early assumptions made by the
OpenLCB developers was that the nodes should
be peer-peer, globally unique, and self describing.

 Without these features LCC has little to
differentiate itself from other legacy solutions.
Granted it can be faster, and more reliable, but
that is not in itself any reason to make a
fundamental change in how we do things.

LCC Basic Concepts -
Peer-Peer

 In general networks come in two varieties. They are
Master–Slave and
Peer–Peer

 As implied, Master–Slave has a master device that
controls all communications with remote nodes.
(slaves) Usually this is done in a round robin
method where the master unit polls each slave in
turn to send/receive data.

 Peer–Peer on the other hand allows each node to
communicate directly with every other node on
an equal footing.

LCC Basic Concepts -
Peer-Peer

 The advantage of a Master–Slave network is that
the master controls the network timing and there
are no collisions to detect and/or resolve. The big
disadvantage is that nodes can not know the status
of any other nodes. The (single) master device
decides what will be done with all information.

 The advantage of a Peer–Peer network is that
any/every node can watch and/or act on
information from any other node. The
disadvantage is that each node needs to monitor
for any message conflicts and resolve them.

LCC Basic Concepts -
Globally Unique

 In addition, every legacy model railroad control
network that I am aware of is plagued by an
identity crisis. To communicate on a network the
first order of business is to give each device an
”address”. This is required in order to create a
sense of identity and give order to network
communications. Usually this is the first step in
configuration. For example, you are not allowed
to simply plop down a new locomotive on a
layout and expect it to operate in an independent
manner without first assigning it a unique (to that
layout) address.

LCC Basic Concepts -
Globally Unique

 The OpenLCB design folks recognized this flaw,
and established an addressing convention large
enough to allow factory preassigned globally
unique addresses to each potential LCC node,
world wide. Each NMRA DCC manufacturer
could build over 16,000,000 nodes before they
will run out of their own unique addresses and
need to apply to the NMRA for a new address
range. I think that the OpenLCB guys have this
requirement covered for long enough that I will
not be worried about it.

LCC Basic Concepts -
Globally Unique

 Some of you may be old enough to
remember when adding a serial
port or printer port to your
computer required you to set
address switches and IRQ option
jumpers on the I/O board.

 Is there anyone here today that did that with the
latest computer that they purchased?

 Is there anyone here today that had to assign the
address of the latest piece of model railroad
electronics that they purchased? Enough said...

LCC Basic Concepts -
Self Describing

 When I add a new device to my
modern computer, I expect it
to automatically show up in
the device manager as seen
here.

 Why shouldn’t we
expect the same thing
when we add a new
node to our layout?

Now, with LCC, that
is a 21st century
reality.

LCC Basic Concepts -
Self Describing

 With DecoderPro if you want to program a decoder
you need to first find the correct ”decoder file” and
then place the decoder in programming mode, maybe
with a jumper or by putting
it on a dedicated
’programming’ track.

 With LCC you don’t tell the
system what hardware you
have added. The system
tells you what hardware
you have added, what you
have named it, and what
capabilities it has.

LCC Basic Concepts -
Self Describing

 With LCC you simply select ”Open Configuration dialog” and
all required information is read
from the node itself.

 This opens a DecoderPro like
window that allows you to make
changes.

LCC Basic Concepts -
Event driven

 ”Event driven” means that the nodes communicate with one
another by sending messages whenever something happens.

The event messages look like this, but you didn’t really need to
know that, anymore than you need to know the format or
content of the messages that your car’s O2 sensor uses when it
sends messages to the ECU. If there is anything to remember, it
is that 02.01.57.10.00.0B.00.30 (144,492,389,284,380,720) is a
really large number that isn’t in any immediate danger of
causing conflicts with other events from other devices on your
layout.

LCC Basic Concepts -
Event driven

 I will repeat this bottom line again here. EventIDs
are simply magic numbers that represent your
information on the bus, or over the air. There is
no reason that you should ever need to type one
out manually. There is little if any reason (other
than curiosity) that you would ever need to know
any details of what they mean. (which isn’t a
whole lot anyway)

LCC Basic Concepts -
Event driven

 Its the Event ma'am, just the Event.
 In previous control systems that use a bus and

events, (e.g. LocoNet and in a lesser sense CMRI)
the events or messages sent on the bus have two
parts, first an identifier number (address), and
second the message type. This follows the
original code line concept where each event was a
hard coded station number plus one or more
commands. For example: turnout #23 set normal.

LCC Basic Concepts -
Event driven

 This is:

1. a Turnout command
2. for station #23
3. set to normal

 A matching command with a predefined one bit different
would mean turnout #23 set to reverse. Another one bit
change would create turnout #24 set to normal etc.

 Sometimes the size of the DCC command space and the
protocol design limits the number of possible options to a
predefined set. (e.g. 2048 turnouts, 4096 sensors, etc.)

LCC Basic Concepts -
Event driven

 For example turnouts only have two options,
normal and reverse. If you have a three way
turnout, (very rare on the prototype) sorry, you
need to think of it as 2 two position turnouts.
Have a three color signal, sorry, you need to think
of that as either three different on, off, messages,
(CMRI) or else combine two 2 position messages.
(LocoNet) What about a more typical eastern US
speed signal with 5, 6, or even more aspects?

LCC Basic Concepts -
Event driven

 In the LCC world an event has no predefined meanings.
None, Keiner, Nada! An LCC event simply says;
’something has happened’, or ’something should
happen.’ How it is defined is 100% up to you, the user.
In our previous example it could still mean turnout #23
set normal. However with LCC 'turnout #23' is just what
you call it on your layout, not that it was pin 23 on some
brand of hardware controller. Set normal just means that
the event moves the turnout to normal. Undoubtedly you
will want another event to move the turnout back,
however that will be a completely different event with a
different meaning. (e.g. turnout #23 set reverse)

 Producer - Consumer You will probably hear LCC folks throwing
around terms like Producer and Consumer. They aren't talking
about a big business takeover. They are just trying to sound
educated. <G> The Producer-Consumer control concept is used for
process controls and software queuing.

 Producer simply means that some device can create (produce) an
Event. Some examples might be a push button or block detector.

 Consumer just means that some device can respond to (consume)
an Event. It could be a lamp, a turnout driver, or anything else
that you can control.

 Events can have from 1 to many Producers. Events can have from
0 to many Consumers. Events are simply messages on the bus
that say that something has happened or should happen.

http://openlcb.org/trunk/documents/notes/ProducerConsumerModel.html

LCC Basic Concepts -
Producer Consumer

http://openlcb.org/trunk/documents/notes/ProducerConsumerModel.html

To elaborate a little bit. For an event to happen something must have
sent it. Therefor there has to be at least one producer. In the LCC world
it is possible for many different Producers to create the same event. For
example you might want to have turnout control buttons track side and
on a remote panel. Thus the statement that every Event has one or more
producers.

Producer

 Consumer

LCC Basic Concepts -
Producer Consumer

For consumers the picture is a bit different. There is
nothing in the specification that says any device has
to respond to an Event. You may have built a panel
for a passing siding that doesn't yet exist. If you press
its turnout control button an Event message gets sent
out. (producer) However there is nothing to respond.
(consumer) Later you might add a turnout controller
and a computer based CTC machine and have several
consumers for that Event. Thus the statement that
every Event has zero or more consumers.

LCC Basic Concepts -
Producer Consumer

Step 1. Basic Equipment

 An LCC network needs something to connect one
node to another. For sake of this article we are
assuming a wired network using the CAN bus
over RJ45 network cables. There are other
options such as Wi-Fi but that is beyond the
scope of this introduction.

 An LCC network really should have access to a computer
interface to make it easy to configure. An LCC
Buffer-USB is shown. It is only required during
configuration or when using JMRI or another
program as a node.

 An LCC network also needs power for its nodes.
This may be supplied directly to the nodes if so
equipped, or it may come from the network cable
for low powered nodes. An LCC Power-Point
powers the Signal Demo network over the CAT5
cables.

 An LCC network using the CAN bus needs bus
terminators at each end of the cable.

Step 2. Hooking it all
together.

Each node and other LCC device has two connectors. Plug CAT5
cables between them in a series string from one to the next in
any order desired. Plug the two terminators into the unused end
connections. Apply power to the network at the power point.
You are now done and have an operating LCC network.

Obviously, on a large network I would distribute multiple power
injection points evenly around the cable. CAT5 cable is only
good for carrying ½ to 1 amp in any given section. On the other
hand it is very convenient to run individual nodes directly from
the network cable rather than supplying power over separate
wires and power supplies to each one.

Step 3. Connect JMRI to our
LCC Network.

Once we have an LCC network running we need to hook it up to
JMRI. (available free at www.jmri.org) There are other programs
available to do this configuration step, but we will use JMRI
because it is pretty easily available for all platforms, and its
functionality with LCC is superb.

Open your Device Manager on Windows. (or equivalent for Linux
or Mac)

Plug in the LCC Buffer-USB. (or other interface) notice which
new connection appears in the Ports (COM & LPT) section and
make a note of it.

http://www.jmri.org/

● In this example it was “USB Serial
Device (COM3)” that appeared.

● Now start JMRI and navigate to the
‘Edit – Preferences – Connections’
window.

● Enter the ‘System manufacturer’ as ‘LCC’, the ‘System
connection’ as ‘CAN via LCC Buffer-USB’, (or whatever
your interface device is called) and the ‘Serial port:’ as
‘COM3’ or whatever port your interface appeared on.

● Click on [Save] and wait for JMRI to restart. JMRI should now
be communicating with your LCC network as a node so that it
can interact just as any other node would. It can then show us
what is happening on our network, and modify nodes using the
CDI.

Step 4. Getting Started with
JMRI

 Once JMRI has restarted, and using PanelPro, we see
this window which now knows about the LCC
connection.

 Click on the ‘LCC’
drop down list and
select ‘Configure
 Nodes’

 This gives us the
Window that we
have seen previously.

 ‘Configure Nodes’ simply queries the LCC network and
creates a list of connected nodes.

 Now we see some more information
about the node. We could further
explore the ‘Supported
Protocols’, but unless you are
interested in geeky things, this is
of no practical use to us. It simply
tells us that this node can send its
status information to other nodes
when it starts up, can be firmware
upgraded over the network, can
be configured over the network,
supports user names, etc.

 Of note is that all of this
information is stored in the
node itself, not in JMRI,
which is simply serving as
a handy tool to let us view
and change things in the
node.

Step 5. The CDI

 The first item we need to check out is the one called
“Open Configuration dialog”. That opens a new
window showing what LCC calls the CDI.
(Configuration Description Information) To
create the CDI window JMRI does two reads
from the node. The first read is the descriptive
information itself, stored in the node. It describes
all the things that the node can do and how to
display it. This part of the CDI is written by the
manufacturer, and is similar to a JMRI decoder
file, but instead of being part of JMRI, it is stored
in the node itself.

 There are a few reasons for this. One, it means that
other programs beside JMRI can open and
configure the same information.

 Another, it means that the configuration
information remains with the node itself. Your
club member that does configurations can take
the node to his desk at home to work on with his
own computer if he wants to. There is no need to
synchronize a “Roster” file to carry along with it.

 It also means that if a new node is released you do
not need to wait for a new version of JMRI to be
released in order to configure it.

Configuration of LCC nodes

 One of the key new concepts in the LCC protocol is
that, not only the configuration, but the ’decoder
file’ (in JMRI terms) itself should reside in the
LCC node. This is an important change from the
status quo.

 Originally hardware had a fixed purpose. Each
required its own dedicated connections. Lionel
crossing gates flashed with contacts triggered by
the passing wheels. (blink-blink....blink-blink....)

Configuration of LCC nodes

 Then some devices were connected to a bus. (or
track) This required assigning addresses or
channels. The usual solution for addressing was
to include a set of jumpers or switches for the
selection. In some cases it was a plug with
different component values.

 As electronics improved the selection of addresses
was moved into the device code itself. An
example that we are all familiar with is modern
DCC mobile decoders.

 One of downsides of this new method is that our
decoders now need to be configured with a new
(non default) address. That itself was automated
by some manufacturers, but it soon became
evident that something more was needed than
simple interactions through a hand held throttle.
Some of todays new decoders have 1000 or more
values to configure.

Configuration of LCC nodes

 JMRI and other programs have come to the rescue,
but the decoders are now so complex that a
’decoder file’ is required for each locomotive and
stored on a computer to help keep track of
changes. The DCC specification does not include
an easy way to read information from a decoder
except very laboriously and slowly over a special
connection. (called a programming track)

Configuration of LCC nodes

 This manual address assignment was deemed to be too
slow and inflexible for the new LCC equipment. Two
key changes were required.

 The first was that any LCC node could be configured in
place on the layout at any time with no need to access it
for jumper changes or button presses.

 The second was that any information required to configure
a node should reside in the node itself, and be available
to any configuration tool connected to the network. Now
any node could be configured in one place and moved to
another with all the information moving with the node
itself. This means not only configuration values but user
names and comments as well.

Configuration of LCC nodes

 As previously mentioned, a key design choice of LCC was
that the manufacturer would assign a node ID during
manufacturing in a manner that prevents any duplication
of addresses…. Ever, …. anywhere! (similar to Ethernet
MAC addresses)

 This manufacturer based address assignment has another
unforeseen benefit. Any automatic or user linking of two
LCC nodes no longer needs to know anything at all about
the rest of the layout in order to prevent unintended
conflicts We will take advantage of this for signaling.

 Adding a new node to the layout will never conflict with
any already installed devices.

Configuration of LCC nodes

 With the recent addition of an option to place the
DCC rail sync information on an otherwise
unused pair, CAN can now support smart
boosters.

 I have referred to the CAN version of LCC.
Remember that the LCC protocol is also capable
of being used over different systems, Ethernet,
and Wi-Fi also being developed for use by other
LCC developers.

Currently Available LCC
Hardware

The Future of LCC

 *Smart Detector, Railcom, Circuit Breaker, Reversers

 Simple Detector, CT coil based.

 Stall Motor Driver (Support for ganged Tortoises, MP1, etc.)

 Dual Coil Solenoid Driver.

 *Servo controllers.

 LocoNet to LCC Gateway. (LCC support for existing products)

 *Ethernet LCC Links.

 *Wireless LCC Links.

 Throttles

 *Smart Boosters, *Command Stations.

* denotes LCC nodes currently under development in 2021

Because LCC is an open standard anyone can develop tools for it. One such developer is
Robert Heller of Deepwoods Software. This is part of his model railroad software package.
http://www.deepsoft.com/home/products/modelrailroadsystem/downloadmr/
Run the OpenLCB tool.

If you are using the LCC Buffer-USB
as your interface device, then select
’Grid Connect CAN over USB’ .

Next select the proper COM port. (this
example is on Linux)

Once you click on ’Open’ a similar window to the one
you saw in JMRI will open. The first entry is the
program connection itself. The other entries are a list
of the attached nodes.

As in JMRI, open the node you choose to configure by
expanding its tree view.

http://www.deepsoft.com/home/products/modelrailroadsystem/downloadmr/

 I created the next slide back in 2017. I include it here for a little
bit of perspective.

The Future of LCC

 Current configuration tools are still under development. One
design target is to eliminate any reference to the actual
EventID numbers, and simply use the users own names for
items.

 I am not optimistic about seeing that in my lifetime, but once a
line is configured you really can ignore the details of each
EventID because you will not need to worry about any
duplication, and you do not need to know them ahead of time
to properly select the hardware like you do on existing
networks. In LCC the hardware either offers you a new
unused Event, or you may configure it to respond to your
own already defined Events. (just copy your EventID to it)

 Look carefully at a current configuration presentation. Fortunately I
have apparently outlived my pessimistic prediction.

The Future of LCC

 Other Layout Animation
 Signaling is normally the most complex animation applied to a model

railroad layout.

 Crossing gates and flashers with or without sound is another closely
related animation that is often attempted by modelers. Commercial gate
animators have various levels of sophistication, from simple on – off,
control to reasonably accurate operation. I have seen designers twist
themselves into knots trying to figure out how to do it accurately in
both directions. However if you think in terms of Events it is actually
very simple. Define two blocks. The first covers the entire gate
Approach area. The second covers just the highway portion. We call it
the Island.
The Logic:
1. Approach clear AND Island clear = gates up This requires memory
of the two events plus AND logic, or else using detectors that may be
stacked so that a train in the island activates both island and approach
detectors.
2. Approach occupied event = gates down
3. Island occupied event = gates down
4. Island clear event = gates up

 Traffic signals. Simple flashers to full four or six cycle control.

 Building lighting and signage.

 Day – Night lighting.

 Street and parking lot lighting.

 Operating bridge spans.

 Warehouse doors.

 Mine skips.

 All of the above could be individual devices, or centrally controlled for
even more realism. Building lights could follow room lighting, bright
in the evening, off late at night, then on again early in the morning.
Traffic signals go to flashing mode late at night. Warehouse doors open
when trains arrive. Etc.

Acknowledgements

Key OpenLCB Contributors: Bob Jacobsen, Alex
Shepherd, David Harris, Stuart Baker, Balazs Racz, Jim
Kueneman, Don Goodman-Wilson, John Plocher

Developer Group

10 to 15 actively working on code at any time
25 to 50 regular contributors and supporters
Many of the same people as supporting JMRI

OpenLCB User Group

https://groups.io/g/layoutcommandcontrol

Started November 2009
Oct 2021 we had over 380 members

Typically a few messages a day. A great source of info.

Info
Users Groups:

https://groups.io/g/openlcb
https://groups.io/g/layoutcommandcontrol

To Join: openlcb+subscribe@groups.io
layoutcommandcontrol+subscribe@groups.io

Useful Links:

http://openlcb.org or http://openlcb.com

http://nmra.org, choose S&RP scroll to 9.7

Book: Introduction to Layout Command Control
 by Dana Zimmerli PhD

https://groups.io/g/layoutcommandcontrol
mailto:openlcb+subscribe@groups.io
mailto:layoutcommandcontrol+subscribe@groups.io

Questions

 ?

