NMRA MER 2017
The Susquehannock
Signaling with LCC

(Layout Command & Control)

Compiled by: Dick Bronson
RR-CirKits, Inc.

Signaling with LCC.

www.rr-cirkits.com/clinics/MER-2017-Signaling with LCC-A.pdf



=l |ilullising /%, L
Layout Command Control




What is LCC?

LCC is an information highway
for your model railroad layout

RAILROAD

LCG




LCC is a common language for layout
elements to talk to each other

® Signals ® Boosters

® Turnouts ® Command Stations
® Detectors ® Throttles

® Lights ® Power Managers
® Panels ® [rains

® PCs/ Smart Phones @ etc...



What is LCC NOT?

LCC does NOT replace DCC.
On the track — DCC
Beside the track — LCC

-

LCC is not dependent on DCC,
could run on DC or Marklin layouts

not locked to the DCC manufacturer



I have heard it said that LCC 1s a solution
looking for a problem, because we already
have many ways to control our layouts.

That 1s true, and 1t 1s part of the problem. We
have LocoNet, CMRI, XpressNet, MERG,
plus other proprietary methods to connect
our devices.



Many of us simply use the DCC 1itself to
control devices. That has two problems.

First it 1s a one way street. Have you ever
seen a DCC connected detector? (yes,
Railcom could possibly do it)

Second, DCC 1s limited 1n bandwidth, and

competing with the repetitive locomotive
control information.



What about LocoNet, CMRI, XpressNet,
MERG, plus the many other proprietary
methods to connect our devices.

Most of these solutions originated due to
the difficulty 1n using the DCC bus for
any input information.



CMRI was actually the first system to allow for two
way communication with the layout. In my
opinion its primary drawback 1s its Master/Slave
nature.

A CMRI system always requires a single master
computer to control everything. Until recently it
was also proprietary.

No CMRI node can communicate directly to
another CMRI node.



The LocoNet was the first Peer-Peer model railroad
network. That means that any device may talk to
any other device without any master unit being in
charge. (except during programming)

Unfortunately the LocoNet 1s proprietary and
requires licensing for commercial use.

The LocoNet operates only slightly faster than DCC

1tself. I .E

The LocoNet does not overload gracefully.



The XpressNet 1s a Master/Slave network with the
same limitations as CMRI, and has little US
presence or support.

The UK based MERG group have many excellent
designs, but they require an annual membership
fee to access many of them. Their addressing 1s
not globally unique, so you must still keep track
of node address usage.



The NMRA decided a decade ago to call

for the creation of an open (license free)
method to interface to your layout. The
intent was that, like the NMRA DCC
standards, many manutacturers would
be able to build layout accessory
products that will interchange as freely
as 1s now true for DCC mobile
decoders.



The bus must use license free commercial standards
for 1its communications as much as 1s possible.

It should be robust and viable into the next
generation of electronic products.

It should be a peer-peer design with no
requirements for any central control.

Any two devices from any manufacturers must be
able to exchange data.

The Open LCB group was chosen to develop this.



The result was a set of protocols from the Open
LCB group that can be sent over any media. For
example, EtherNet, Wi-Fi1, CAN (Control Area
Network), and others. (some say tin cans and
string, but don’t believe 1t)

The NMRA calls this Open LCB protocol LCC.
Layout Command and Control. LCC 1s NOT a

replacement for DCC. (unless you consider it
replacing DCC accessory decoders)

LCC can be run along side of DCC, AC, DC, DCS,
TMCC, RailPro, Battery power, etc. It 1s not a
way to power your trains, it 1s a way to control
your whole layout.



It 1s important to remember that LCC can be transported
over many network technologies.

When we (RR-CirKits, Inc.) decided to build LCC devices
we had to make a choice of which transport to use. Wired
Ethernet was one option, but designing a peer-peer
network for Ethernet was way above our pay grade. The
other problem 1s that it would require multi port Ethernet
Switches with direct cable connections to each device.
This would require more wiring, not less, than current
options. Wireless sounded nice, but it has 1ssues with
many nodes, and putting a radio in every node seems like
a complex and costly solution as well.




CAN was 1nitially developed as a solution for automotive
networking. This means that it 1s noise tolerant, an
industry standard, and designed for the 12-24V world.
CAN can be operated over a wide speed range, with a
linear trade off between bus speed and bus length.

The OpenL.CB engineers picked a 125Kb rate and 1000’
length as a good compromise for model railroad use.
This 1s still an order of magnitude faster than DCC.

Also, unlike the other popular Peer-Peer system, CAN can
operate continuously at 100% data throughput with error
free collision resolution.



The relatively high CAN bus speed does not allow
for free form network designs. A CAN network
segment requires a linear bus with a termination
at each end to operate properly.

Due to timing and other electrical limitations a
single CAN segment 1s limited to 40 or fewer
physical nodes. There are fairly simple ways to
expand a CAN network 1into multiple segments,
so this 1s not a serious concern.



CAN has several different cabling and connector standards.
Some of these use large and costly connectors. Often
CAN uses the same DB-9 connectors used by RS-232
serial cables. These are still relatively large and no longer
very easy to locate, especially in longer lengths.

Another CAN connector option uses the same RJ45
connectors and cables as wired Ethernet does. The
OpenLCB engineers opted for RJ45 connectors because
of the relatively low cost and their common availability
world wide. The 4 pairs of a standard Ethernet cable
additionally allow for optional power and DCC booster
drive signals 1n addition to the CAN data pair itself.



How many here understood Brian Pickering’s
August 2017 NMRA Magazine technical article
on Events in LCC?

I will repeat his bottom line again here. EventIDs
are simply magic numbers that represent your
information on the bus, or over the air. There 1s
no reason that you should ever need to enter one
manually. There 1s little if any reason that you
would ever need to know the details of what they
mean. (which isn’t a whole lot anyway)



Its the Event ma'am, just the Event.

In previous control systems using a bus and events,
(e.g. LocoNet and 1n a lesser sense CMRI) the
events or messages sent on the bus have two
parts, first an identifier number (address), and
second the message type. This follows the
original code line concept where each event was a
station number plus one or more commands. For
example: turnout #23 set normal.



This 1s:

1. a Turnout command
2. for station #23
3. set to normal

A matching command with a predefined one bit different
would mean turnout #23 set to reverse. Another one bit
change would create turnout #24 set to normal etc.

Sometimes the size of the DCC command space and the
protocol design limits the number of possible options to a
predefined set. (e.g. 2048 turnouts, 4096 sensors, etc.)



For example turnouts only have two options,
normal and reverse. If you have a three way
turnout, (very rare on the prototype) sorry, you
need to think of it as 2 two position turnouts.
Have a three color signal, sorry, you need to think
of that as either three different on, off, messages,
(CMRI) or else combine two 2 position messages.
(LocoNet) What about a more typical eastern
speed signal with 5, 6, or even more aspects?



In the LCC world an event has no predefined meanings.
None, Keiner, Nada! An LCC event simply says;
’something has happened’, or *something should
happen.” How it 1s defined 1s 100% up to you, the user.
In our previous example 1t could still mean furnout #23
set normal. However with LCC 'turnout #23' 1s just what
you call 1t on your layout, not that i1t was pin 23 on some
brand of hardware controller. Set normal just means that
the event moves the turnout to normal. Undoubtedly you
will want another event to move the turnout back,
however that will be a completely different event with a
different meaning. (e.g. turnout #23 set reverse)



Maybe you want all turnouts to move to normal
when you first start up. With our conventional
control bus you need some way to send the proper
commands to each turnout. (sometimes called
Routes) With the LCC system you could simply
define a new Event that says 'set all turnouts
normal' and then configure each turnout to also
respond to that command (by moving in the
appropriate direction)



Producer - Consumer You will probably hear LCC folks
throwing around terms like Producer and Consumer. They
aren't talking about a big business takeover. The
Producer/Consumer concept 1s an industry standard
terminology to separate requests from execution.

Producer simply means that some device can create (produce) an
Event. Some examples might be a push button or block detector.

Consumer simply means that some device can respond to
(consume) an Event. It could be a lamp, a turnout driver, or
anything else that you can control.

Events can have from 1 to many Producers. Events can have from
0 to many Consumers.

http://openlcb.org/trunk/documents/notes/ProducerConsumerModel.html


http://openlcb.org/trunk/documents/notes/ProducerConsumerModel.html

To elaborate a little bit. For an event to happen something must have
requested 1t. Therefor there has to be at least one producer. In the LCC
world 1t 1s possible for many different Producers to create the same
event or request. For example you might want to have turnout control
buttons track side and on a remote panel. Thus the statement that every
Event has one or more producers.

|
Producer ‘ @ﬂ\

\Euent
\
b
- Tum On> @ Consumer




For consumers the picture 1s a bit different. There 1s
nothing in the specification that says any device has
to respond to an Event. You may have built a panel
for a passing siding that doesn't yet exist. If you press
its turnout control button an Event or request
message gets sent out. (producer) However there 1s
nothing to respond. (consumer) Later you might add
a turnout controller and a computer based CTC
machine and have several consumers that can
respond to that Event. Thus the statement that every
Event has zero or more consumers.



Application to Signals
Signaling usually requires more logic than can be
handled via simple Events, e.g. occupancy, turnout
position, look ahead to the next signals, etc. However
a signal controller could be designed to listen to all of
the appropriate Events and fully control the signal
aspects. Note that 1t's still useful for a signal system
to emit (produce) Events for each aspect change so
that e.g. a control panel can mirror the appearance of
the on-layout signals, or so that the next signal can
know 1ts aspect.



In the following examples we will compare
different methods of controlling signals.
This varies from individual LEDs to a full
blown track side control point.



Signals via individual lamp drivers

You can connect the lamps of a signal head to individual Consumers:

Turn On >{Green
Turn Off > Lamp

Turn On >{Yellow
Turn Lamp

Turn On > Red
Turn Off > Lamp

§ou

This 1s a powerful but complicated approach. It requires that the
controller individually turn each lamp on or off. This can cause
excessive control traffic and latency causes poor timing of flashing
signals. This 1s the method used by CMRI.



Signals via individual head drivers

You can also control signals with Events for the specific colors or functions
of a single head.

Red

Yellow

Flash Y >{ Signal
Via

Green Head

Dark

Lunar

This method requires less command traffic than the previous one.
However, if the controller does not know how to flash the signals, it may
still result in constant streams of messages to be able to show flashing
aspects. The Digitrax SE8c falls into this category. It normally only
displays Green, Yellow, Red, and Dark. To show "Flash Y’ you need to
alternate between sending Yellow and sending Dark. Got Lunar? Nope!



Signals via aspect drivers

You can control an entire signal mast with just one Event for each high-
level aspect of the signaling system.

Absolute
Stop

Restricting

Approach

Approach
Diverging

Div Approach

Signal
via
Mast

Diverging
Diverging
Clear

Clear

This method requires the minimum amount of command traffic to
control the signals themselves. However it still requires an external
controller or a program such as JMRI to monitor the layout and calculate
the proper aspects. The Team Digital SHD2, Signalist SC1, and our RR-
CirKits SignalMan in NMRA Signal Aspect mode fall into this category.



Signals via control point drivers

You could also control an entire interlocking with just single Events for
each high-level aspect of the signaling system including turnout position.

TO Straight
TO Diverge

Held Signal

Clear Left via
Approach Left CP

Clear Right
Approach Right

This method is similar to the signal aspect driver, but includes turnout
control and possibly even occupancy detection on the same node.
However it still requires an external controller or program such as JMRI
to calculate the proper aspects. The old RR-CirKits LNCP is similar to
this option.



Integrated Signals

In each of the examples above, the signal controller uses (consumes) Events that
directly control the appearances of the signals.

TO Straight
—C:T

O Diverge A

Main Free “:
Main Occ A
Side Free .
Side Dc:r:upia; '
—.| .
 STFee 7 Signal
ST Oceupied A m a .
Main Clear “: CP :
Main ApproachA ﬁ'kUtU

— |
5

ide Clear :
Side Approach’;
o7 rlaar ™
ST Clear :
ST Approach -
BT
Held

o
Rel Left
Rel Right $

It's also possible to build a signal controller that watches all related status
Events from the railroad and CTC panel and makes independent decisions about
the proper signal states and appearances. This type of controller would be able
to control its signals without any external computer involvement.



LCC Background

At the Detroit NMRA National back in 2007 the NMRA was seeking a network
standard to be known as NMRAnet for layout control. They proposed that the
Manufacturers Working Group create a standard in a 6 month time frame. (if
my memory serves me correctly)

LCC grew out of a concept first presented by John Socha-Leialoha during a lunch
meeting in the food court following that meeting. John proposed that the PC
(Producer Consumer) model be used by this new standard, and proceeded to try
to explain to some of us gathered around the table just what he meant by that.
Time and politics passed, and the NMRA tentatively accepted one early
proposal. However, other folks didn’t agree and formed an independent project

known as...
prenica
et

More time and politics passed, and the NMRA finally decided to get out of the
specification writing morass, and turned that job over to the original OpenL.CB

group.




Fast forward to just prior to the Cleveland NMRA National in 2014. The
NMRA went back to the OpenLLCB group and gave them an ultimatum.
Present a proposal to the NMRA or they would declare the project as
dead. This created a new sense of urgency and the basic specifications
were presented to the NMRA in time for the early 2015 board meetings.
Unfortunately in the rush to publish something, some key features were
omitted, so 1t was not until late 2015 before we (RR-CirKits, Inc.) felt
that the specifications were mature enough to actually start delivering
hardware. Specifically we wanted our users to have an approved method
for upgrading their products.

With the NMRA approval came their new branded version of the OpenLCB
specifications. They call it LCC. (Layout Command and Control)




One of the first manufacturers of CAN based layout control nodes
was the MERG group. They proposed that the NMRA accept their
protocol. In fact some of the early development work was done
using their hardware.

Another early proposal came from Don Voss. (brother of D1 Voss) It
was Don’s proposal that was originally entertained by the NMRA
as the NMR Anet.

As I previously mentioned, the OpenLCB group felt that these CAN
only protocols were too restrictive to be chosen as the next
generation standard, so they pushed forward with their own 1deas
and protocol proposals.

Fortunately there were some in the NMRA that were taking notice.



= One of the first manufacturers of OpenLLCB nodes was Tim Hatch of
TCH Technologies. A couple of Tims products are shown here.

# ,',"/",4/
///////////,«,”.M

These early boards were essentially OpenLCB replacements for the
32 line Bruce Chubb input and output boards. They were
developed as a way for the developers to run real hardware to
prove out the specifications. Unfortunately they have the same
limitations as their CMRI equivalents in that they are strictly input
or output slaves to a computer program. These boards are no
longer available nor supported by recent JMRI versions.

TCH also manufactured the first CAN bus to USB interface
available for the OpenLCB.



Another early hardware developer was Don Goodman of
Railstars. His OpenLLCB board includes both inputs and
outputs. It is called Io. (named for the Jovian moon)

http://railstars.com/hardware/10/10/
e ET ETER

As far as I know the Railstars Io board 1s no longer available.
However, like the TCH boards, the Io supports just two
producers or consumers per line, so it 1s essentially an I/0
board tied to a computer program.


http://railstars.com/hardware/io/io/

We at RR-CirKits watched all the above history
unfold, and when we figured that the smoke was
mostly cleared, we started the design cycle on a
family of CAN based OpenLLCB boards. (now
NMRA branded as LCC) This 1nitial development
process was delayed due to a missing firmware
upload protocol, but we finally started shipping
hardware to our first customers in January 2016.
(a year after the NMRA accepted the current
protocol)



Our (RR-CirKits, Inc.) current product line
includes the basic items required to start
investigating the new LCC bus. We chose
our first I/O node to be compatible with our
existing product line of daughter cards. This
allows the user to do basic train detection,
turnout control, and similar functions using
available hardware options. Just released 1s
also a signal mast driver.



Latest LCC Hardware

= The newest node we have demgned 1s a Signal

DI‘IVGI‘ > 20 +Load 't

/

[I IT ot
» [ H]I L = :‘; 3 -

Signal LCC
True aspect-based signaling

Easy to configure logic
Max. 8 signal masts, 16 LEDs

Up to 32 aspects
Plus 8x /O lines (like the Tower LCC)



Power — The LCC CAN bus has two basic options for
power supply to the nodes. The first 1s to supply power to
each node. The second 1s to power the nodes from the
CAN bus cable. Of course a node could also do both.
(some early hardware did that) Because one of the
desirable features of the LCC 1s to eliminate as much
layout wiring as 1s practical, we chose the second option.
We suggest that the user supply power to the bus as
required by using our Power-Point module and/or our
LCC Repeater module.



Termination — The LCC CAN bus 1s much faster than any
existing layout control buses, therefore it requires
termination at both ends for proper response. Again, the
standard allows for this termination to be part of each
board, using jumpers or switch selection, or to be
separately provided.

We chose the latter option because we feel that it 1s less
likely to be configured incorrectly. The only places that
the terminators may be easily connected are at each end

of a bus segment, just exactly where they are required,
and no place else.



Cables — The CAN version of LCC was specified to use the
commonly available CATS, CATSE, and CAT6 cables
with RJ45 connectors. The industry standard basic pin
out for CAN over CATS was chosen. This was done so
that the user could easily purchase or construct his own
cables. The 4 and 6 conductor silver satin cables used by
some other manufacturers are no longer as easy to find as
they were 20 years ago. The two different systems (CAN
and Ethernet) that use these cables supposedly will not
suffer damage 1f the cables are cross connected
accidentally between networks. Of course neither
network will work in that case.



Cables — The CAN version of LCC was specified to use the
commonly available CATS, CATSE, and CAT6 cables
with RJ45 connectors. The industry standard pin out for
CAN over CATS was chosen. This was done so that the
user could easily purchase or construct his own cables.
The 4 and 6 conductor silver satin cables used by some
other manufacturers are no longer as easy to find as they
were 20 years ago. The two different systems (CAN and
Ethernet) that use these cables supposedly will not suffer
damage if the cables are cross connected accidentally
between networks. Of course neither network will work
in that case.



With the recent addition of an option to place the
DCC rail sync information on an otherwise
unused pair, LCC over CAN can now support
smart boosters.

I have referred to the CAN version of LCC.
Remember that the LCC protocol 1s also capable
of being used over many different systems,
Ethernet, and Wi-F1 are also being developed for
use by other LCC developers/manufacturers.



One of the key new concepts in the LCC protocol 1s
that, not only the configuration, but the *decoder
file’ (in JMRI terms) itself should reside 1n the
LCC node. This was an important change from
the status quo.

Originally hardware had a fixed purpose. Each
required 1ts own dedicated connections. Lionel

crossing gates flashed with contacts triggered by
the passing wheels. (blink-blink....blink-blink....)



When devices were first connected to a bus, (or
track) we required assigning addresses or
channels. The original solution for addressing
was to include a set of jumpers or switches for the
selection. In some cases 1t was a plug with
different component values.

As electronics improved the selection of addresses
was moved 1nto the device code itself. An

example that we are all familiar with i1s modern
DCC mobile decoders.



One of downsides of this new method 1s that our
DCC decoders now each need to be configured
with a new (non default) address. That itself was
automated by some manutacturers, but 1t soon
became evident that something more was needed
than simple interactions through a hand held
throttle. Some new decoders currently have 1000
or more values to configure along with their
addresses.



JMRI and other programs have come to the rescue,
but the decoders are now so complex that a
"decoder file’ 1s required for each locomotive and
stored on a computer to help keep track of
changes. The DCC specification does not include
an easy way to read information from a decoder
except very laboriously and slowly using a
special connection. (called a programming track)



This manual address assignment was deemed to be too
slow and inflexible for the new LCC equipment. Two
key changes were required. The first was that any LCC
node could be configured in place on the layout at any
time with no need to access it for jumper changes or
button presses, or to use a special programming circuit.

The second was that any information required to configure
a node should reside in the node itself, and be available
to any configuration tool connected to the network. Now
any node could be configured in one place and moved to
another with all the information moving with the node
itself. This means not only configuration values but any
user names and comments as well.



Another key design choice of LCC was that the
manufacturer would assign a node ID during
manufacturing in a manner that prevents any
duplication of addresses.... Ever, .... anywhere!
(stmilar to Ethernet MAC addresses)

This manufacturer based address assignment has
another unforeseen benefit. Any automatic or user
linking of two LCC nodes no longer needs to
know anything at all about the rest of the layout
in order to prevent unintended contlicts We will
take advantage of this for signaling.



Block

Detect Occupancy
Mast
Turnout Rules_| Rule to Speeq :> This
Position/ Norm/Rev Aspect Speed
Appearance i
Speed T PP %

Next To previous

Speed | Signal
From Next Signal Drivers

The basic signal logic overview.

e Rule logic is calculated using layout status information and next speed.

e The resulting ‘Rules’ are converted to lighted lamps, effects, and speeds.



Signal Logic

The heart of a signal controller is that it watches all related status Events from the
railroad and CTC panel, and makes independent decisions about the proper
signal states and appearances. It is the vital logic for the signal.

Rule to Aspect conversion

Signal rules such as *Stop’, ‘Approach’, ’Clear’, Etc. are displayed differently on
different types of signals. A simple way to make these conversions is needed.

Signal Drivers

Signal LEDs may be driven from 5V logic levels, but there are good reasons to use
higher voltages like 12V for the primary drive. Signals are sometimes wired
common anode, and sometimes wired common cathode. Drivers may also be
responsible for special effects such as lamp fading. (both up and down)



Signal Logic Example

Norm/Rev

- Occupancy

Appearance

To previous
Signal

-
!

From Next Signal Drivers
In typical existing systems the green items are part of the layout hardware, and
the red items are taken care of by an attached computer.

Features such as Lamp Effects are difficult or impossible for the computer to
accomplish well, due to interface latency and driver restrictions.



Track Circuits

In order to properly calculate signal rules the signal logic must know the allowed
speed upon approaching the next signal along each route. Prototype speed
information is often sent from one mast to the previous over track circuits.

Effects

Prototype signal lamps do not always simply blink on or off as they change.
Effects simulating incandescent lamp fade and other visual artifacts can increase
the realism of our signals.

Brightness

If we can fade our signals, then we should also be able to adjust their brightness to
make them visually match between different lamps and colors.



Signaling Continued

= To be continued with:

MER-2017-Si1gnaling with LCC-B



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58

