NMRA 2017
Orange Blossom Special
Signaling with LCC

(Layout Command & Control)

Compiled by: Dick Bronson
RR-CirKits, Inc.

Signaling with LCC.

www.rr-cirkits.com/clinics/NMRA-2017-Signaling with LCC.pdf

=l |ilullising /%, L
Layout Command Control

What is LCC?

LCC is an information highway
for your model railroad layout

RAILROAD

LCG

LCC is a common language for layout
elements to talk to each other

® Signals ® Boosters

® Turnouts ® Command Stations
® Detectors ® Throttles

® Lights ® Power Managers
® Panels ® [rains

® PCs/ Smart Phones @ etc...

What is LCC NOT?

LCC does NOT replace DCC.
On the track — DCC
Beside the track — LCC

-

LCC is not dependent on DCC,
could run on DC or Marklin layouts

not locked to the DCC manufacturer

I have heard it said that LCC 1s a solution
looking for a problem, because we already
have many ways to control our layouts.

That 1s true, and 1t 1s part of the problem. We
have LocoNet, CMRI, XpressNet, MERG,
plus other proprietary methods to connect
our devices.

Many of us simply use the DCC 1itself to
control devices. That has two problems.

First it 1s a one way street. Have you ever
seen a DCC connected detector? (yes,
Railcom could possibly do it)

Second, DCC 1s limited 1n bandwidth, and

competing with the repetitive locomotive
control information.

What about LocoNet, CMRI, XpressNet,
MERG, plus the many other proprietary
methods to connect our devices.

Most of these solutions originated due to
the difficulty 1n using the DCC bus for
any input information.

CMRI was actually the first system to allow for two
way communication with the layout. In my
opinion its primary drawback 1s its Master/Slave
nature.

A CMRI system always requires a single master
computer to control everything. Until recently it
was also proprietary.

No CMRI node can communicate directly to
another.

The LocoNet was the first Peer-Peer model railroad
network. That means that any device may talk to
any other device without any master unit being in
charge. (except during programming)

Unfortunately the LocoNet 1s proprietary and
requires licensing for commercial use.

The LocoNet operates only slightly faster than DCC

itself.
The LocoNet does not overload gracefully. %

The XpressNet 1s a Master/Slave network with the
same limitations as CMRI, and has little US
presence or support.

The UK based MERG group have many excellent
designs, but they require an annual membership
fee to access many of them. Their addressing 1s
not globally unique, so you must still keep track
of node address usage.

The NMRA decided a number of years
ago to sponsor an open (license tree)
method to interface to your layout. The
intent 1s that, like the NMRA DCC
standards, many manufacturers will be
able to build layout accessory products
that will interchange as freely as 1s now
true for DCC mobile decoders.

How many here read Brian Pickering’s August
2017 NMRA Magazine article on Events in LCC?

How many understood 1t?

I will repeat his bottom line again here. EventIDs
are simply magic numbers that represent your
information on the bus, or over the air. There 1s
no reason that you should ever need to enter one
manually. There 1s little if any reason that you
would ever need to know the details of what they
mean. (which 1sn’t a whole lot anyway)

Its the Event ma'am, just the Event.

In previous control systems using a bus and events,
(e.g. LocoNet and 1n a lesser sense CMRI) the
events or messages sent on the bus have two
parts, first an identifier number (address), and
second the message type. This follows the
original code line concept where each event was a
station number plus one or more commands. For
example: turnout #23 set normal.

This 1s:

1. a Turnout command
2. for station #23
3. set to normal

A matching command with a predefined one bit different
would mean turnout #23 set to reverse. Another one bit
change would create turnout #24 set to normal etc.

Sometimes the size of the DCC command space and the
protocol design limits the number of possible options to a
predefined set. (e.g. 2048 turnouts, 4096 sensors, etc.)

For example turnouts only have two options,
normal and reverse. If you have a three way
turnout, (very rare on the prototype) sorry, you
need to think of it as 2 two position turnouts.
Have a three color signal, sorry, you need to think
of that as either three different on, off, messages,
(CMRI) or else combine two 2 position messages.
(LocoNet) What about a more typical eastern
speed signal with 5, 6, or even more aspects?

In the LCC world an event has no predefined meanings.
None, Keiner, Nada! An LCC event simply says;
’something has happened’, or *something should
happen.” How it 1s defined 1s 100% up to you, the user.
In our previous example 1t could still mean furnout #23
set normal. However with LCC 'turnout #23' 1s just what
you call 1t on your layout, not that i1t was pin 23 on some
brand of hardware controller. Set normal just means that
the event moves the turnout to normal. Undoubtedly you
will want another event to move the turnout back,
however that will be a completely different event with a
different meaning. (e.g. turnout #23 set reverse)

Producer - Consumer You will probably hear LCC folks
throwing around terms like Producer and Consumer. They
aren't talking about a big business takeover. They are just
trying to sound educated. <G>

Producer simply means that some device can create (produce) an
Event. Some examples might be a push button or block detector.

Consumer just means that some device can respond to (consume)
an Event. It could be a lamp, a turnout driver, or anything else
that you can control.

Events can have from 1 to many Producers. Events can have from
0 to many Consumers.

http://openlcb.org/trunk/documents/notes/ProducerConsumerModel.html

To elaborate a little bit. For an event to happen something must have
sent 1t. Therefor there has to be at least one producer. In the LCC world
it 1s possible for many different Producers to create the same event. For
example you might want to have turnout control buttons track side and
on a remote panel. Thus the statement that every Event has one or more
producers.

|
Producer ‘ @ﬂ\

\Euent
\
b

- Tum On> @ Consumer

For consumers the picture 1s a bit different. There 1s
nothing in the specification that says any device has
to respond to an Event. You may have built a panel
for a passing siding that doesn't yet exist. If you press
its turnout control button an Event message gets sent
out. (producer) However there 1s nothing to respond.
(consumer) Later you might add a turnout controller
and a computer based CTC machine and have several
consumers for that Event. Thus the statement that
every Event has zero or more consumers.

Application to Signals
Signaling usually requires more logic than can be
handled via simple Events, e.g. occupancy, turnout
position, look ahead to the next signals, etc. However
a signal controller could be designed to listen to all of
the appropriate Events and fully control the signal
aspects. Note that 1t's still useful for a signal system
to emit (produce) Events for each aspect change so
that e.g. a control panel can mirror the appearance of
the on-layout signals, or so that the next signal can
know 1ts aspect.

In the following examples we will compare
different methods of controlling signals.
This varies from individual LEDs to a full
blown track side control point.

Signals via individual lamp drivers

You can connect the lamps of a signal head to individual Consumers:

Turn On >{Green
Turn Off > Lamp

Turn On >{Yellow
Turn Lamp

Turn On > Red
Turn Off > Lamp

§ou

This 1s a powerful but complicated approach. It requires that the
controller individually turn each lamp on or off. This can cause
excessive control traffic and latency causes poor timing of flashing
signals. This 1s the method used by CMRI.

Signals via individual head drivers

You can also control signals with Events for the specific colors or functions
of a single head.

Red

Yellow

Flash Y >{ Signal
Via

Green Head

Dark

Lunar

This method requires less command traffic than the previous one.
However, if the controller does not know how to flash the signals, 1t may
still result in constant streams of messages to be able to show flashing
aspects. The Digitrax SE8c falls into this category. It normally only
displays Green, Yellow, Red, and Dark. To show "Flash Y’ you need to
alternate between sending Yellow and sending Dark. Got Lunar? Nope!

Signals via aspect drivers

You can control an entire signal mast with just one Event for each high-
level aspect of the signaling system.

Absolute
Stop

Restricting

Approach

Approach
Diverging

Div Approach

Signal
via
Mast

Diverging
Diverging
Clear

Clear

This method requires the minimum amount of command traffic to
control the signals themselves. However it still requires an external
controller or a program such as JMRI to monitor the layout and calculate
the proper aspects. The Team Digital SHD2, Signalist SC1, and our RR-
CirKits SignalMan in NMRA Signal Aspect mode fall into this category.

http://openlcb.org/trunk/documents/notes/ProducerConsumerModel.html

Signals via control point drivers

You could also control an entire interlocking with just single Events for
each high-level aspect of the signaling system including turnout position.

TO Straight
TO Diverge

Held Signal

Clear Left via
Approach Left CP

Clear Right
Approach Right

This method 1s similar to the signal aspect driver, but includes turnout
control and possibly even occupancy detection on the same node.
However it still requires an external controller or program such as JMRI
to calculate the proper aspects. The old RR-CirKits LNCP 1s similar to
this option.

Integrated Signals

In each of the examples above, the signal controller uses (consumes) Events that
directly control the appearances of the signals.

TO Straight
—C:T

O Diverge A

Main Free “:
Main Occ A
Side Free .
Side Dc:r:upia; '
—.| .
 STFee 7 Signal
ST Oceupied A m a .
Main Clear “: CP :
Main ApproachA ﬁ'kUtU

— |
5

ide Clear :
Side Approach’;
o7 rlaar ™
ST Clear :
ST Approach -
BT
Held

o
Rel Left
Rel Right $

It's also possible to build a signal controller that watches all related status
Events from the railroad and CTC panel and makes independent decisions about
the proper signal states and appearances. This type of controller would be able
to control its signals without any external computer involvement.

Another key design choice of LCC was that the
manufacturer would assign a node ID during
manufacturing in a manner that prevents any
duplication of addresses.... Ever, anywhere!
(stmilar to Ethernet MAC addresses)

This manufacturer based address assignment has
another unforeseen benefit. Any automatic or user
linking of two LCC nodes no longer needs to
know anything at all about the rest of the layout
in order to prevent unintended contlicts We will
take advantage of this for signaling.

Block

Detect Occupancy
Mast
Turnout Rules_| Rule to Speeq :> This
Position/ Norm/Rev Aspect Speed
Appearance i
Speed T PP %

Next To previous

Speed | Signal
From Next Signal Drivers

The basic signal logic overview.

e Rule logic is calculated using layout status information and next speed.

e The resulting ‘Rules’ are converted to lighted lamps, effects, and speeds.

Signal Logic

The heart of a signal controller is that it watches all related status Events from the
railroad and CTC panel, and makes independent decisions about the proper
signal states and appearances. It is the logic for the signal.

Rule to Aspect conversion

Signal rules such as *Stop’, ‘Approach’, ’Clear’, Etc. are displayed differently on
different types of signals. A simple way to make these conversions is needed.

Signal Drivers

Signal LEDs may be driven from 5V logic levels, but there are good reasons to use
higher voltages like 12V for the primary drive. Signals are sometimes wired
common anode, and sometimes wired common cathode. Drivers may also be
responsible for special effects such as lamp fading. (both up and down)

Signal Logic Example

Norm/Rev

- Occupancy

Appearance

To previous
Signal

-
!

From Next Signal Drivers
In typical existing systems the green items are part of the layout hardware, and
the red items are taken care of by an attached computer.

Items such as Lamp Effects are difficult or impossible for the computer to
accomplish well, due to interface latency and driver restrictions.

Track Circuits

In order to properly calculate signal rules the signal logic must know the allowed
speed upon approaching the next signal along each route. Prototype speed
information is often sent from one mast to another over track circuits.

Effects

Signal lamps do not always simply blink on or off as they change. Effects
simulating lamp fade and other visual artifacts can increase the realism of our
signals.

Brightness

If we can fade our signals, then we should also be able to adjust their brightness to
make them visually match between different colors.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49

