CPL Example

Signal Logic Example

Block
Detect

Occupancy

Turnout
Position/ Norm/Rev

From Next Signal Drivers
With the Signal LCC all of the control functions required for signaling exist in
a single node. Light blue items are taken care of with a daughter card.

Appearance

To previous
Signal

If you want to off load (or monitor) any function with a computer you may do
so by intercepting the LCC EventlIDs that link sections with each other.

Signal Logic

In order to build a signal controller that watches all related status
Events from the railroad and CTC panel, and makes independent
decisions about the proper signal states and appearances, 1t must
contain internal logic. This logic must either be user controlled or
else 1t must understand all known signaling rules.

Triggering the evaluation of a conditional is done when any monitored event is
seen. There are two trigger options. In the first option evaluation of a
conditional 1s only done if the monitored event actually changes the state of the
variable. In the second case the evaluation i1s done when ever the event 1s seen,
even 1if there 1s no resulting change to a variable. This allows repeated single
events to trigger a conditional multiple times.

Block

Detect Occupancy
Mast
Turnout Rules_| Rule to Speeq :> This
Position/ Norm/Rev Aspect Speed
Appearance i
Speed T PP %

Next To previous

Speed | Signal
From Next Signal Drivers

vAy vAg vAg vAg
ety

The BOD4 and BOD4-CP cards each include 4 block detector circuits for easy
connection to the Signal LCC board. These boards use CT coils to prevent
track voltage drop and provide 100% isolation.

Block Detector Variables

= Variables

Variables are used to follow the state of objects of interest such as block detectors,
turnout positions, etc. Normally two events will allow the variable to follow the
state of some object, true/false, normal/diverging, clear/occupied, etc.

% Select Input/Output line.

[Line 1 (Whithead West Main 1) | Line 2 (Whithead West Main 2) | Line 3 [Line 4 | Line5 [Line 6

1o
Line description

'Whithead West Main 1 | Refresh Write
Output Function \
No Function ¥ | Refresh Writ

Input Function
Active Lo | Refresh Write

Lets start by conne a block sensor to an input. Its description 1s~ Whithead
West Main 1’ so we enter 1tia-the description block and ‘Write’ it to the node.
Detectors are Input Functions with “Active Lo’ so we set that and write it. For a
normal Input be sure that the Output Function is set to ’No Function’. Of course
"Line 1’ 1s the one connected to our first block detector.

Block Detector Variables

= Input (Producer) Events

We now go to the Indications (Producers) for this line, and enable two events. The
first (Event 1) will be sent when the Input is ’On’ (goes low in our application)
When we need to know if the block goes occupied, we will use this EventID.

Indications
Producer commands.

f Event 1 |/ Event 2 |/ Event 3 |/ Event 4 |/ Event 5 r Event 6
Upon this action

Input On +* | Refresh

EventiD
(P) this event will be sent.

|UE.Dl.5?.1D.DD.DE.DD.D6

Other uses of this Event iD:
Sensor Whithead wWest Main 1 Active

Refresh Write Copy Paste Search

Event 2 will b€ set to ‘Input Off’. Use ‘Copy’ and ‘Paste’ when you need to
utilize the magic numbers (EventID) for these events. Its description “Whithead
West Main 1’ Is noted here to remind you of its function. This information is
known because I made a JMRI sensor that follows it. This 1s a JMRI feature
available in the JMRI CDI tool.

Block Detector Variables
= JMRI Sensors

JMRI includes a handy tool at the bottom of the CDI window to make sensors or
turnouts from events. LCC Nodes may use two (or more) EventIDs to control
sensors and turnouts, so you must use cut/paste to choose the pair that you want
for JMRI. For this sensor we use Eyent 1 and Event 2 that we just defined.

v SensorfTurnout creation
User name

\Whithead West Main 1
Event‘ for Active / T

102.01.5f.10.00 06 | Paste
Event I for Inactjmsed
(02.01.54.10.00.06.00.07 | Copy Paste
/ Make Sensor Make Turnout
R‘efresh All Save charyéﬁ Backup... Restore... Make All Sensors Make All Turnouts
Enter the J user name for this sensor, (or turnout) then click on the Make

Sensor button. This item will automatically be added to your JMRI Sensor (or
turnout) table. Be sure to save the table for future use. Normally this data will
become part of a ‘Panels’ file, and be synchronized with the node when loaded.

Block

Detect Occupancy
Mast
Turnout Rules_| Rule to Speeq :> This
Position/ Norm/Rev Aspect Speed
Appearance i
Speed T PP %

Next To previous

Speed | Signal
From Next Signal Drivers

vAy vAg vAg vAg
ety

The BOD4-CP cards also include 2 ‘H’ Bridge drivers controlled by the Signal
LCC board. These drivers are isolated from the LCC to prevent power
supply 1ssues.

Turnout Variables

= QOutput (Consumer) Events

We now go to the Indications (Producers) for a line. (on board ...07)

%* Segment: Port 1/0-1
% Select Input/Output line.

Line S (Turnout 101 N) |/ Line 6 lTurnuut 101 R) |/L|ne 7 (Turnout 102 M) |/ Line 8 (Turnout 102 R) |

Line 1 (Bu ain 1) Lin Butler Main 2) Line 3 (Whithead E Main 1) r Line 4
/O
Line description

[Turnout 101 N || Msh | Write ‘

Output Function

|Pulse Active Lo | Refresh | Write

Input Function

|Disabled - R\fresh | Write ‘
Delay

Delay time values for 5, pulses, debounce.
Interval 1 | Intengal 2 |\

Delay Time (1-600'!;& \

\
100 \‘\ | sh Write
‘MilliseMs |v| Refresh Write |

Retrigger

INo |v| Refrégh | write
AN

Our turnoutshare contralled by Kato dual coil so

1ds. This requi%lual line

drivers and 100mS pulse\Qutputs. Normally inputs are disabled for Output

Functions. Note: Use Inter

2 for pulse length. Interval 1 is the pulse delay.

Turnout Variables

Output (Consumer) Events

Event 1 will turn ‘On’ the line and event 2 will turn it ‘Off’. Remember we already
specified that/On’ just sends a 160mS pulse, so oyf coils are safe.
ands
Cun mer comman

[Eventl | Euentlr Event 3 | Event 4 |’ Evght 5 | Event 6 |
EventID

(C) When this ent 0CCUrs,

102.01.57.10.0£.07.00.30 | Refresh // Write

Other usesfof this Event I1D:
Turnout TArnout 201 Closed

the linggtate will be changed/{o.
Oon (Lihe Active) *| Refresh ﬁte

Lommands
Consumer comman

[Event 1 | Event 2 |’ Event 3 |’ Evgfit 4 | Event 5 | Event 6 |

EventiD
(C) When this event occurs,
|02 01.57.10,00.07.00.31

Other uses of this Eve
Turnout Turnout 20

the line state wj
Off (Line Inactiffe)

Copy EIEtE Search

1]

efresh Write Copy Paste

Search

e changed to.

| Refresh Write

1]

Turnout Variables

= QOutput (Consumer) Events

To configure the second coil we will do two tricks with events. First we copy and
paste the two eveats from the first line to the second line. Next we reverse their
actions. Eve ill turn ‘Off” the line and event 2 will turn it ‘On’. Done!

Commands

Consumer comm 5. /
[Event1 | Evpfit 2 | Evgnt 3 | Epént 4 [Event 5 | Event 6 |
EventID /

02.01.57.10.00.07.00.5# | Refresh Write Copy Paste Sey(
/0-1.Select Input/Output line. (5, Turnout 101 N). g Commands(1)

Other uses of thfvent 1D:

(Line Inactﬁe]
y A

Commands
Consumer cgmmands.

Event 2 r Event 3 | Eve Event 5 r Event 6 |

w | Refresh ertel
> |

this event occurs
” Refresh Write Copy Paste Search
ent 1D:

- | Refresh Write

Input (Producer) Events.

We now get really fancy. To be compatible with the Berrett Hill Touch Triggers

we added a Sample’ option to our I/O lines. We take advantage of that on the
BOD4-CP. Each output driver has a corresponding input line.

Line 1 (Butler Main 1) | Line 2 (Butler Main 2) | Line 3 (Whithead E Main 1) | Line 4 | Line 5 (Turnout 101 N) | Line 6 (Turnout 101 R) | Line 7 (Turnout 102 N) | Line 8 (Turnout 102 R)
11O

Line description

Turnout 102 R Refresh Write

Output Function
Pulse Active Lo |+| Refresh Write

Input Function

Alt Sample Lo |+ | Refresh Write

We use the input for Lin€ 8 and connect it to a push button. We set the ‘Input
Function’ to be ‘Alt Sample Lo’. This means that each time the input goes low
it will alternate the function state. The line still sends its output to drive the

turnout as before. We can also use the same line (physical wire) as an input by
sampling it.

For simplicity just have the line send the turnout control events directly. For
realism, combine the control events with occupancy and/or panel information
that prevents any turnout movement when occupied, or locked.

Block
Detect

Occupancy
Turnout
Position/ Norm/Rev
Speed
Next Y
Speed [v

T

From Next Signal

Mast

Rules_| Rule to Speeq :> This
Aspect Speed
Appe%rance i

| To previous

Lamps Slgnal

Effects

Drivers

A quick look at any railroad rule book will
reveal that the same rule may be displayed
in many ways. This means that we need a
"’Rule’ to *Aspect’ conversion process.

- BEvents
\\ - o

Rule Event
Value

_
-

Configuration Values

<

~ Match

v

v

v

v

v

Lamp A Lamp B Lamp C Lamp D Lamp E
Function Function || Function || Function || Function
Generator | Generator | Generator | Generator | Generator
!' “‘ !' 1 !' 1 !' 1 i
< L < = ~_ = ~_ = <
Onl/off Special
Fade, etc. Effects

Signal Masts

This flow chart shows Mast functionality. Any signal rule that is seen
(matched) can send up to 4 lamp control messages, an optional
special effect, what speed is sent by the track circuit, and send
optional events. These optional events may be used to send

indications to a CTC panel.

s ‘ [
~_‘Speed’
K i

_ Sent ,
. on‘set

_ Sent
~~.on‘clear

Send

Event/s (P) Virtual
] Track

. Circuit

< Send .

~ (P) Event
< Value

(P) Event
< Value

The EventIDs sent and responded to by each rule are also controlled by the
MASTS segment. Because this Rule to Aspect conversion 1s actually the
links between the ’Rule’ events and the actual hardware we call it all
"MASTS’ and treat it as one segment in the CDI.

The Signal LCC supports 8 Masts, each of which supports 8 indications. If
a single mast requires more than 8 aspects, then any mast may be
logically linked with a previous one.

A ’Mast’ definition makes two assumptions.

Only one aspect may be shown at a time. Setting any aspect
automatically cancels any previous aspect.

A mast may only have a single speed limit at a time. This *Speed’ is
the present allowed speed going past the mast.

Making a mast ’Linked to Previous’ carries the above assumptions over
from any previous mast/masts. Speed is always taken from the first mast.

LED Drivers

Different colors of LEDs have different voltage drops. This drop is
subtracted from the drive voltage when calculating the series resistance.
A typical red LED operates at 1.9V and a green operates at 3.3V. This
means that at SV the red resistor drops 3.1V and the green resistor drops
1.7V. With the same resistor values, the red LED will draw nearly twice
the current as the green. Using a 12V source, the resistor voltage drops
are 10.1V and 8.7V respectively, or just a 15% difference in current.

Sometimes it 1s easiest to wire 2 LEDs in series for Position Light or Color
Position Light signals. The voltage drops of green and yellow LEDs
make 1t difficult or impossible to drive these with 5V supplies. As a
result all of our RR-CirKits signal driver boards have always supplied
10V or more to the drive circuits.

Brightness settings help you match the intensity of LEDs in the same mast.

Signal Mast Setup

[»

%P Segment: MASTS
%* Select Mast
[Mastl [Mast2 | Mast 3 [Mast4 [Mast5 | Mast 6 | Mast 7 | Mast 8

Function
Mast Processing

Normal w | Refresh Write

Unused

Normal \ .
Linked to Previous b |_Refresh Write
(P) Track Circuit Down Li addrewahle, copy to Track Circuit
[02.01.57.10.00.06.02.00 | \ Refresh Writ Copy Paste Search

Function

To use a mast you,must first change 1t & ’Normal’ or ’Linked to Previous’.

Next give it a Mast ID so you can easily fixd it again later. This could be a
CTC panel number, a mile marker, a contxpl point name, etc.

Track Circuit Down Link Address. This fixed
to the current track speed setting for this mast. Copy this number to any
track circuit receive (RX) table to make it easy for logic to follow speed.

Track Circuit Train Direction

This Next :
Aspect E> Seee % S > Logic

Direction

When calculating sigimdl fules, the most impgrtant information from the next
signal 1s the required tgack speed on appfoach to that signal. In many
cases this information ik actually a parf/of the rule name.

In modular layout setup, ggtting this information easily from module to
module is the single biggest roadblgck to installing authentic signaling.
Our Virtual Track Circult concept/is designed to simplify this.

To link the speeds selected ¢n a mgst to the logic of another mast, simply
copy the "Track Circuit ink address’ from one mast, and paste it
into the ‘Remote Mast Up Link address’ of another. This automatically
makes the speed information from one mast available to the logic of
another mast without requiring the entry of specific EventID information
for each speed change into the appropriate logic conditionals.

Indications (Name)

= Indications tell the crew what to do at a signal. The "Rule’ or "’Name’ 1s the
shorthand for the Indication.

Indications
[iInd1 [Ind2 [Ind3 [Ind4
Indication (name)

ind7 [Ind8 |

0-Stop | Refresh Write
Track Speed (on approach to signal)
Stop N + | Refresh Write

EventlD
(C) Event tﬂ&ndicatiﬂn. MNote: Indications are cleared automatically by the logic.
102.01.5§.10.00.06.%2.08 | Refresh Write Copy Paste Search

= The selected "Track Speed’ (one of eight possible) 1s the value that will be
sent back to the previous signal over the Virtual Track Circuit. If the
name$§ don’t match your rules, simply pick something similar. Its just a
to the track circuit.

= EventID to Set Indication. This 1s the EventID used by the signal logic to
set this signal rule.

Lamps

= The bottom line in displaying an aspect is to choose what lamps are lit.
After all, that is what the crew (and the visitors) actually see.

= The mast on the signal bridge is dual head searchlights. This means *Stop’

will display Red over Red. Pick the appropriate lamps to show this.
Lamps e\ Lamps
Individual Aspect ps ndividual Aspect Lamps
Lampl [L 2 ['Lamp 3 | Lamp 4 | \amp 1 [Lamp2 [Lamp 3 [Lamp 4 |
Lamp Sghction L@np Selection
#11 H3-R |+ | Refresh Write #15H4-R |+ | BRefresh Write

Lamp Phase (A-B) - Flash Rate

Lamp Phase (A-B) - Flash Rate

Steady

-

Refresh

Write

Steady

w | Refresh

Write

To show Indication 2 - Approach’ display Yellow over

Lamp Phase (A-B) - Flash Rate
Refresh

Write

Steady -

Continue 1n like manner until

Lamps | L amps
Individual Aspect Lamps Individual Aspect Lamps
b L/_
[Lamp1 [Lamp 2 [Lamr 2 | Lamp 4 | (Lamp 1 [Lamp 2
Lamp Seler =i, Lamp Selection
#14 H4-Y |»| Refresh Write #11 H3-R Refresh Write

Lamp Phase (A-B) - Flash Rate
Refresh

Write

Steady -

you have entered each possible aspect.

Each Indication (Aspect) can display with as many as four lamps. I you
have a rare signal aspect that can not be shown with just 4 lighted lamps
you can make a duplicate mast to light any additional lamps. Remember
dual lamps that light together only count as a single lamp. (e.g. in
Position Lights and Color Position lights) Only lighted lamps count.
Only controlled lamps count. A marker that 1s always lighted can simply
be powered full time.

Lamp Phase — Flash Rate may be used to flash signals automatically. One
common example 1s *Advance Approach’ which is commonly displayed
with a flashing yellow lamp. Setting an appropriate Flash Rate means
that the signal logic doesn’t need to worry about flashing the signal or
overloading the bus with unecessary traffic. Providing both A and B
phase options 1s handy for grade crossing flashers or other alternating
lamp situations.

Incandecent fade. Signal lamps are wired differently than standard
household lamps. They include a ballast resistor in series with the lamp.
This ballast serves two purposes. One 1s simply to set the brightness of
the lamp. More importantly when the cold lamp is first powered up it
prevents the normal inrush current by dropping most of the voltage
across the ballast until the lamp warms up. The visual result of this 1s
that a signal does not blink on rapidly. In fact signals fade on slowly
enough to be noted. Of course even houshold incandecents fade off
slowly as the lamps cool down again.

Transition effects. The B&O signal clip we saw earlier shows an interesting
transition between Clear and Stop. Not only does it show the fade up and
down, but it interjects a brief *Approach’ into the change. I can not tell
you why this 1s done, but selecting *Transition Down’ as a special effect
on ’Stop’ will allow you to do this. (and wow your rivet counting crew)

H2 Red Flicker. Many of you know that real searchlight signals (not just the
H?2) have an internal arm that swings back and forth in front of the lamp.
It hangs by gravity with a red roundel in center position. Either green or
yellow requires swinging the arm out of its center position with
electromagnets. Not quite as obvious is the fact that you can not change
between yellow and green without passing the red between them. This
causes the red flash. The other part of the effect 1s that the arm is free
swinging and during a change it will overshoot its position as it settles
down. This swings the color roundels past their normal positions which
causes the signal to appear to flicker.

Strobe lights can be found around the layout. Sometimes it is nice to be able
to utilize unused signal outputs for other purposes.

Block

Detect Occupancy
Mast
Turnout Rules_| Rule to Speeq :> This
Position/ Norm/Rev Aspect Speed
A i
Speed T ppe%rance

Next - To previous

Speed | Signal
From Next Signal Drivers

vAy vAg vAg vAg
ety

Paste the next masts ‘Up Link EventID’ from any mast to a track circuit. This
creates a virtual link directly into the logic variables by virtual name rather
than by using actual event numbers. The logic for a mast can be setup, or
mass produced, without knowing any actual mast IDs ahead of time.

Block

Detect Occupancy
Mast
Turnout Rules_| Rule to Speeq :> This
Position/ Norm/Rev Aspect Speed
Appearance i
Speed T PP %

Next To previous

Speed | Signal
From Next Signal Drivers

vAy vAg vAg vAg
ety

We have covered all the edges. Now we can talk about the central subject,
Signal Logic itself.

Signal Logic is just a series of conditions (called conditionals) that are
checked to see what signal rule should currently be in effect.

Logic conditionals should be easy to cascade with the calculations for the
most restrictive rules having priority over less restrictive rules. We do
this by checking each conditionals in order from top down. Any rule that
1s found to be true first checks for any more restrictive rule still in effect.
(which exits processing if found) Then it sends its appropriate events,
and finally skips over any less restrictive rules for the mast.

Any conditional may directly send up to 4 events representing signal rules
(or anything) when it is found to be true. (or false) A cascade option
allows even more events to be sent in special situations. Note: this logic
may be used for many other purposes than just calculating signal aspects.

Logic Functions consist of the usual AND, OR, XOR operators. In addition
there are two ’change’ operators. These change the true/false sense of a
conditional based on the AND and OR of the variables.

Additionally we have added a non-standard logic operator called *’AND
Then’. This makes it very easy to keep track of train direction. You can
simply watch two block detectors and determine train direction by the
order in which they are activated.

A recent addition is the ability to control the action associated with both
true and false evaluations of a conditional. These options are to *Send
then Exit Group’, ‘Send then Evaluate Next’, ’Send then Send Next’,
‘Exit Group’, and ’Evaluate Next’. The ‘Send then Send Next’
automatically goes to the next conditional and always treats it as if it
were true. This makes it easy to send more than 4 events from a single
conditional.

Logic Conditionals

= Normally Signal Logic Conditionals will have a Group function of "Mast
| Legicl (Whithead W Main 1 Stop) | Logic2 | Logic3 [Logic4 | Logi

9 9 9
Group’ or else "Last’. | =~ "

[whithead W Main 1 Stop
Group function

Mast group |+| Refresh

Write

= The function of a conditional *Group’ 1s to pick the most restrictive rule for
a mast and send 1t to the mast table for conversion to the proper aspect.

Refresh

Write

Block

Detect Occupancy
Mast
Turnout Rules_| Rule to Speeq :> This
Position/ Norm/Rev Aspect Speed
Appearance i

Speed T PP %
Next To previous
Speed | Signal

T

From Next Signal

The basic signal logic overview.
e Rule logic is calculated using layout status information and next signal speed.

e The resulting ‘Rules’ are converted to lighted lamps, effects, and speeds.

Trailing Signal Logic

Comments Variable 1 Variable 2 This Aspect This Speed

Not CTC-Right /
OS occupied

Siding selected / Main
occupied

Next Main Stop Approach

Next Main Medium Main Mast Medium

Next Main Clear

To create ’"Not CTC-Right’ simply reverse the events controlling *Variable 1’ for that
conditional. This data is from the direction lever on a CTC panel.

We check wrong CTC direction, the turnout against us, the OS occupied, and the track past the
turnout occupied. Any of these will set the signal to Stop.

If the signal has not been set to Stop, then we check to see if the next signal’s speed is *Stop’.
(Main Mast Stop) If so we set this signal to >’ Approach’ with a speed of "Medium’. (or
"Approach’) Sometimes it is helpful to realize that * Approach’ when used by itself is short
hand for ’ Approach Stop’.

If not Stop, then we check for next signal’s speed of "Medium’ (or *Approach’) and set our
aspect appropriately.

Finally, finding nothing more restrictive, we can set it to ’Clear’.

Facing Signal Logic

Comments

Not CTC-Right /
OS occupied

Siding occupied

Variable 1

Turnout Reverse

Variable 2

Main occupied

Turnout Normal

AND

Next Siding Stop

Turnout Reverse

AND

Next Main Stop

Turnout Normal

AND

This Aspect

Medium Approach

This Speed

Next Siding Medium

Turnout Reverse

AND

Approach

Medium

Siding Mast Medium

Next Main Clear

Turnout Normal

AND

Medium Approach
Medium

We now expand our logic to consider two possible routes.

Medium

It should be clear from the above that calculating aspects for the signal prior
to this interlocking 1s simplified by knowing the signal speeds, because
there are five different aspects to check, but there are only three different
speeds to check. The three different possible medium speed aspects do
not cause any change in the signal prior to this one, so it only needs to
show Clear, Approach Medium, (or Advance Approach) Approach, and

Stop.

Logic

Comments

Variable 1

Not CTC-Right/
OS occupied

S5ystem Name: M502.01.57.10.00.06.01501;02.01.57.10.00.06.01.00

User Name: |CTC Lever Whithead RML1

Funct

Variable 2

System Name:
User Name:

This
Aspect

This Speed

02.01.57.10.00.06.00.1E; 02. 01.57.10.00. 06.00.1F
\Whithead 0S Main 1 |

= These two variables as seen in JMRI. I used the Sensor/Turnout creation tool
to enter them.

Logic description

["Logic 1 (101R Stop) | Logic 2 (101R Stop) | Logic 3 (101R Appr) | Logic 4 (101R Appr-Med) | Logic5 (101R Clear) | Logic/|

ILO1R Stop

Group function

Mast group

Refresh

Write

Variable #1

Variable #1 Trigger

On Variable Change

Refresh

Write

v\ Refresh rite
Variable #1 So \
Enter Variable #1 \ents Ba&low |+ | Refresh

= Enter the

lo

description and set the function to Mast Group. Logic defaults
to watchingwariable changes.

Logic

Comments Variable 1 Funct Variable 2

This
Aspect

This Speed

Not CTC-Right/
OS occupied

System Name: MS02.01.57.10.00.06.01.01;02.01.57.10.00.06.01.00 System Name: MS02.01.57.10.00.06.00.1E;02.01.57.10.00.06.00.1F
User Name: |CTC Lever Wiglhead RM1 User Name: \Whithead 05 Main 1 |

= T actually used the default E¥entIDs found in variable #1 to create my lever. EventIDs
are globally uniques0 I had no worry about conflicts in meanings.

EventlD
(C) Event to set variaple #1 e.
[02.01.57.10.00.06.01p0 & Refresh Write Copy Paste search

Other uses of this£vent 1D:

Sensor MS02.01.57.10.00.06.01.00;02.01.57.10.00.06.01.01 Active
Sensor CTC Levey Whithead BM1 Inactive

EventlD
(C) Event to se¥ variable #1 false.
102.01.57.10.00.06.01.01 | Refresh Write Copy Paste Search

Other uses of this Event 1D:
Sensor M502.01.57.10.00.06.01.00;02.01.57.10.00.06.01.01 Inactive
Sensor CTC Lever Whithead BM1 Active

Logic function
V1 OR V2 | Refresh Write

= Enter the logic function. In this case it is "OR’.

Comments Variable 1 Funct Variable 2 This This Speed
Aspect

Not CTC-Right/
OS occupied

S5ystem Name: M502.01.57.10.00.06.01.01;02.01.57.10.00.06.01.00 System Name: MS502.01.57.10.00.06.00.1E;02.01.57.10.00.06.00.1F
User Name: |CTC Lever Whithead RM1 | User Namg; ithead 05 Main 1

= For the block detector I copy/pas e I/O line into Variab

EventiD
(C) Event to set varj e,

102.01.57.10.00.06.00.1E | Refresh Write Copy

Other uses of this Event ID:
Sensor Whithead 05 Main 1 Active
CP Whithead W.Port I/0-1.5elect Input/Output line

EventlID
(C) Event to set variable #2 false
102.01.57.10.00.06.00.1F efresh Write Copy Paste Search
Other uses of this Event iD:

Sensor Whithead 05 Main 1 Inactive
CP Whithead W.Port I/0-1.5elect Input/Output line.(3, Whithead 0S Main 1).I/O.Indications(2)

ithead 05 Main 1).1/O0.Indications(1)

Action when Conditional = True
Send then Exit Grﬂup\ +| Refresh Write
naj=

Action when Conditio False
Evaluate Next \ w| Refresh Write

= These default actions are normal for mast logic conditionals. If the condition is
true, then any actions are sent, and all less restrictive aspects are skipped.

Logic

Comments

Not CTC-Right/
OS occupied

System Name:

Variable 1

User Name:

Funct

MS02.01.57.10.00.06.01.01;02.01.57.10.00.06.01.00
|CTC Lever Whithead RM1

A trigger or change will generate the following events.
[Action 1 | Action 2 | Action 3 | Action 4 |

System Name:
User Name:

Variable 2

This
Aspect

This Speed

M502.01.57.10.00.06.00.1E;02.01.57.10.00.06.00.1F

\Whithead 0S Main 1 |

I then copied the event that
sets the Signal rule to
"Stop’ into *Action 1° of
the logic. Therefore
anytime the CTC
direction lever 1s not
“Traffic Right’ or if the

Immediately |+ | Refresh Write

EventiD

(P) this event will be sent.

102.01.57.10.00.06.02.08 | Refresh Write Copy Paste Search
Other uses ofghis Event ID:

Sensor R/R-Y/K Active

CP Whithead W.MASTS . Select Mast{1.Whithead W1l.Indications(1)

Indications
(ind1 [IndJ 'Ind3 [Ind4 [Ind5 [Ind6 [Ind7 [Ind8 |

Indication (ngme)

0-5top +* | Refresh Write

Track Speedflon approach to signal)

Stop | Refresh Write

EventiD

(C) Event tg Set Indication. Note: Indications are cleared automatically by the logic.
102.01.57.10.00.06.02.08 | Refresh Write Copy Paste Search

OS section 1s occupied,
then the signal will be
set to “Stop’.

With the recent addition of an option to place the
DCC rail sync information on an otherwise

unused pair, CAN can now support smart
boosters.

I have referred to the CAN version of LCC.
Remember that the LCC protocol 1s also capable
of being used over different systems, Ethernet,

and Wi-Fi1 also being developed for use by other
LCC developers.

Latest LCC Hardware

= The newest node we have designed 1s a Signal
Driver.

— |

Signal-LCC
True aspect-based signaling
Easy to configure logic
Max. 8 signal masts, 16 LEDs
Up to 32 aspects

Plus 8x I/O lines (like the Tower-LCC)

Other Layout Animation

Signaling is normally the most complex animation applied to a model
railroad layout.

Crossing gates and flashers with or without sound 1s another closely
related animation that is often attempted by modelers. Commercial gate
animators have various levels of sophistication, from simple on — off,
control to reasonably accurate operation. I have seen designers twist
themselves into knots trying to figure out how to do it accurately in
both directions. However if you think in terms of Events it is actually
very simple. Define two blocks. The first covers the entire gate
Approach area. The second covers just the highway portion. We call it
the Island.

The Logic:

1. Approach clear AND Island clear = gates up (requires memory of the
two events plus AND logic)

2. Approach occupied event = gates down

3. Island occupied event = gates down

4. Island clear event = gates up

Traffic signals. Simple flashers to full four or six cycle control.
Building lighting and signage.

Day — Night lighting.

Street and parking lot lighting.

Operating bridge spans.

Warehouse doors.

Mine skips.

All of the above could be individual devices, or centrally controlled for
even more realism. Building lights could follow room lighting, bright
in the evening, off late at night, then on again early in the morning.
Traffic signals go to flashing mode late at night. Warehouse doors open
when trains arrive. Etc.

Acknowledgements

Key OpenlLCB Contributors: Bob Jacobsen, Alex
Shepherd, David Harris, Stuart Baker, Balazs Racz, Jim
Kueneman, Don Goodman-Wilson, John Plocher

Developer Group

10 to 15 actively working on code at any time
25 to 50 regular contributors and supporters
Many of the same people as supporting JMRI

User Group

Started November 2009
July 2016 we had 226 addresses

NMRA liaison: Stephen Priest
NMRA w.g. chairman: Karl Kobel

Info

Yahoo Users Group

openlcb@yahoogroups.com
LayoutCommandControl@yahoogroups.com

Useful Links
nttp://openlicb.org

nttp://openicb.com

nttp://nmra.org, choose S&RP scroll to 9.7

Qpent.GB

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 41
	Slide 42
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68

