NMRA SER 2017
Crossroads of Dixie
LCC (Layout Command & Control)

Compiled by: Dick Bronson
RR-CirKits, Inc.

Basics of LCC.
www.rr-cirkits.com/clinics/SER-2017-LCC.pdf

=l |ilullising /%, L
Layout Command Control

What is LCC?

LCC is an information highway
for your model railroad layout

RAILROAD

LCG

LCC is a common language for layout
elements to talk to each other

® Signals ® Boosters

® Turnouts ® Command Stations
® Detectors ® Throttles

® Lights ® Power Managers
® Panels ® [rains

® PCs/ Smart Phones @ etc...

What is LCC NOT?

LCC does NOT replace DCC.
On the track — DCC
Beside the track — LCC

-

LCC is not dependent on DCC,
could run on DC or Marklin layouts

not locked to the DCC manufacturer

I have heard it said that LCC 1s a solution
looking for a problem, because we already
have many ways to control our layouts.

That 1s true, and 1t 1s part of the problem. We
have LocoNet, CMRI, XpressNet, MERG,
plus many other propriatary methods to
connect our devices.

Many of us simply use the DCC 1itself to
control devices. That has two problems.

First it 1s a one way street. Have you ever
seen a DCC connected detector? (yes,
Railcom could possibly do it)

Second, DCC 1s limited 1n bandwidth, and
competing with the locomotive control
information.

What about LocoNet, CMRI, XpressNet,
MERG, plus the many other proprietary
methods to connect our devices.

Most of these solutions originated due to
the difficulty 1n using the DCC bus for
any input information.

CMRI was actually the first system to allow for two
way communication with the layout. In my
opinion its primary drawback 1s its Master/Slave
nature.

A CMRI system always requires a single master
computer to control everything. Until recently it
was also proprietary.

No CMRI node can communicate directly to
another.

The LocoNet was the first Peer-Peer model railroad
network that allows any device to talk to any
other device without any master unit in being in
charge. (except during programming)

Unfortunately the LocoNet 1s proprietary and
requires licensing for commercial use.

The LocoNet operates only slightly faster than DCC
itself.

The LocoNet does not overload gracefully.

The XpressNet 1s also a Master/Slave network with
the same limitations as CMRI, and has little US
presence or support.

The UK based MERG group have many excellent
designs, but they require an annual membership
fee to access many of them.

The NMRA decided a number of years
ago to sponsor an open (license tree)
method to interface to your layout. The
intent 18 that, like the DCC standards,
many manufacturers will be able to
build layout accessory products that
will interchange as freely as 1s now true

for DCC mobile decoders.

The bus must use license free commercial standards
for 1its communications as much as 1s possible.

It should be robust and viable into the next
generation of electronic products.

It should be a peer-peer design with no
requirements for any central control.

Any two devices from any manufacturers must be
able to exchange data.

The Open LCB group was chosen to develop this.

The result was a set of protocols that can be sent
over any media. For example, EtherNet, Wi-Fi,
CAN (Control Area Network), and others. (some
say tin cans and string, but don’t believe i1t)

The NMRA calls this Open LCB standard LCC.
Layout Command and Control. LCC 1s NOT a
replacement for DCC. (unless you consider
replacing DCC accessory decoders)

LCC can run along side of DCC, AC, DC, DCS,
TMCC, RailPro, Battery power, etc. It 1s not a
way to power your trains, 1t 1s a way to control
your layout.

It 1s important to remember that LCC can be transported
over many network technologies.

When we (RR-CirKits, Inc.) decided to build LCC devices
we had to make a choice of which transport to use. Wired
Ethernet was one option, but designing a peer-peer
network for Ethernet was way above our pay grade. The
other problem 1s that it would require multi port Ethernet
Switches with direct cable connections to each device.
This would require more wiring, not less, than current
options. Wireless has 1ssues with many nodes, and
putting a radio in every node seems like a complex and
costly solution as well.

CAN was 1nitially developed as a solution for automotive
networking. This means that it 1s noise tolerant, an
industry standard, and designed for the 12-24V world.
CAN can be operated over a wide speed range, with a
linear trade off between bus speed and bus length.

The OpenLLCB engineers picked a 125Kb rate and 1000’
length as a good compromise for model railroad use.
This 1s an order of magnitude faster than DCC.

Also, unlike the other popular Peer-Peer system, CAN can
operate continuously at 100% data throughput with error
free collision resolution.

Disadvantages. The relatively high CAN bus speed
does not allow for free form network designs. A
CAN network segment requires a linear bus with
a termination at each end.

Due to timing and other electrical limitations a
single CAN segment 1s limited to 40 or fewer
physical nodes. There are fairly simple ways to
expand a CAN network 1into multiple segments,
so this 1s not a serious concern.

CAN has several different cabling and connector standards.
Some of these use large and costly connectors. Often
CAN uses the same DB-9 connectors used by RS-232
serial cables. These are still relatively large and no longer
SO very easy to locate, especially in longer lengths.

Another CAN connector option uses the same RJ45
connectors and cables as wired Ethernet does. The
OpenL.CB engineers opted for these RJ45 connectors
because of the relatively low cost and their common
availability world wide. The 4 pairs of a standard
Ethernet cable additionally allow for optional power and
other signals in addition to the CAN data pair itself.

Its the Event ma'am, just the Event.

In previous control systems using a bus and events,
(e.g. LocoNet and 1n a lesser sense CMRI) the
events or messages sent on the bus have two
parts, first an identifier number (address), and
second the message type. This follows the
original code line concept where each event was a
station number plus one or more commands. For
example: turnout #23 set normal.

This 1s:

1. a Turnout command
2. for station #23
3. set normal

A matching command with a predefined one bit different
would mean furnout #23 set reverse. Another one bit change
would create turnout #24 set normal etc.

The size of the command space and the protocol design
limits the number of possible options to a predefined set.
(e.g. 2048 turnouts, 4096 sensors, etc.)

For example turnouts only have two options,
normal and reverse. If you have a three way
turnout, (very rare on the prototype) sorry, you
need to think of it as 2 two position turnouts.
Have a three color signal, sorry, you need to think
of that as either three different on, off, messages,
(CMRI) or else combine two 2 position messages.
(LocoNet) What about a more typical eastern
signal with 5, 6, or even more aspects?

In the LCC world an event has no predefined meanings.
None, Keiner, Nada! An LCC event simply says;
’something has happened’, or *something should
happen.” How it 1s defined 1s 100% up to you, the user.
In our previous example 1t could still mean furnout #23
set normal. However with LCC 'turnout #23' 1s just what
you call 1t on your layout, not that i1t was pin 23 on some
brand of hardware controller. Set normal just means that
the event moves the turnout to normal. Undoubtedly you
will want another event to move the turnout back,
however that will be a completely different event with a
different meaning. (e.g. turnout #23 set reverse)

Maybe you want all turnouts to move to normal
when you first start up. With our conventional
control bus you need some way to send the proper
commands to each turnout. (sometimes called
Routes) With the LCC system you could simply
define a new Event that says 'all turnouts normal
and then configure each turnout to also respond to
that command (by moving in the appropriate
direction)

Producer - Consumer You will probably hear LCC folks
throwing around terms like Producer and Consumer. They
aren't talking about a big business takeover. They are just
trying to sound educated. <G>

Producer simply means that some device can create (produce) an
Event. Some examples might be a push button or block detector.

Consumer just means that some device can respond to (consume)
an Event. It could be a lamp, a turnout driver, or anything else
that you can control.

Events can have from 1 to many Producers. Events can have from
0 to many Consumers.

http://openlcb.org/trunk/documents/notes/ProducerConsumerModel.html

http://openlcb.org/trunk/documents/notes/ProducerConsumerModel.html

To elaborate a little bit. For an event to happen something must have
sent 1t. Therefor there has to be at least one producer. In the LCC world
it 1s possible for many different Producers to create the same event. For
example you might want to have turnout control buttons track side and
on a remote panel. Thus the statement that every Event has one or more
producers.

|
Producer ‘ @ﬂ\

\Euent
\
b

- Tum On> @ Consumer

For consumers the picture 1s a bit different. There 1s
nothing in the specification that says any device has
to respond to an Event. You may have built a panel
for a passing siding that doesn't yet exist. If you press
its turnout control button an Event message gets sent
out. (producer) However there 1s nothing to respond.
(consumer) Later you might add a turnout controller
and a computer based CTC machine and have several
consumers for that Event. Thus the statement that
every Event has zero or more consumers.

Application to Signals
Signaling usually requires more logic than can be
handled via simple Events, e.g. occupancy, turnout
position, look ahead to the next signals, etc. However
a signal controller could be designed to listen to all of
the appropriate Events and fully control the signal
aspects. Note that 1t's still useful for a signal system
to emit (produce) Events for each aspect change so
that e.g. a control panel can mirror the appearance of
the on-layout signals, or so that the next signal can
know 1ts aspect.

In the following examples we will compare
different methods of controlling signals.
This varies from individual LEDs to a full
blown track side control point.

Signals via individual lamp drivers

You can connect the lamps of a signal head to individual Consumers:

Turn On
Turn Off

Turn On
Turn

Turn On
Turn Off

§ou

Lamp

Green

Lamp

Yellow

Red
Lamp

v

This 1s a powerful but complicated approach. It requires that the
controller individually turn each lamp on or off. This can cause
excessive control traffic and potentially poor timing of flashing
signals. This 1s the method used by CMRI and currently (as of
June 2017) available LCC equipment.

Signals via individual head drivers

You can also control signals with Events for the specific colors or functions
of a single head.

Red

Yellow

Flash Y >{ Signal
Via

Green Head

Dark

Lunar

This method requires less command traffic than the previous one.
However, if the controller does not know how to flash the signals, 1t may
still result in constant streams of messages to be able to show flashing
aspects. The Digitrax SE8c falls into this category. It normally only
displays Green, Yellow, Red, and Dark. To show "Flash Y’ you need to
alternate between sending Yellow and sending Dark. Got Lunar? Nope!

Signals via aspect drivers

You can control an entire signal mast with just one Event for each high-
level aspect of the signaling system.

Absolute
Stop

Restricting

Approach

— Signal
roa .
Diverging via
Div Approach Mast
Diverging
Diverging
Clear

Clear

This method requires the minimum amount of command traffic to
control the signals themselves. However it still requires an external
controller or a program such as JMRI to monitor the layout and calculate
the proper aspects. Our RR-CirKits SignalMan in NMRA Signal Aspect
mode falls into this category.

Signals via control point drivers

You could also control an entire interlocking with just single Events for
each high-level aspect of the signaling system including turnout position.

TO Straight
TO Diverge

Held Signal

Clear Left via
Approach Left CP

Clear Right
Approach Right

This method 1s similar to the signal aspect driver, but includes turnout
control and possibly even occupancy detection on the same node.
However it still requires an external controller or program such as JMRI
to calculate the proper aspects. The RR-CirKits LNCP is similar to this
option.

Integrated Signals

In each of the examples above, the signal controller uses (consumes) Events that
directly control the appearances of the signals.

TO Straight :
TO Diverge

—(_f

Main Free “:
Main Occ A
Side Free .
Side Dc:r:upia; '
—.| .
 STFee 7 Signal
ST Oceupied A m a .
Main Clear “: CP :
Main ApproachA ﬁ'kUtU

— |
Side Clear

Side Appmad'n:

—F’f
T Frlaar

ST Clear :
ST

Approach 5
T
Held

o
Rel Left
Rel Right $

It's also possible to build a signal controller that watches all related status
Events from the railroad and CTC panel and makes independent decisions about
the proper signal states and appearances. This type of controller would control
its signals without any external computer involvement.

LCC Background

At the Detroit NMRA National back in 2007 the NMRA was seeking a network
standard to be known as NMRAnet for layout control. They proposed that the
Manufacturers Working Group create a standard in a 6 month time frame. (if
my memory serves me correctly)

LCC grew out of a concept first presented by John Socha-Leialoha during a lunch
meeting in the food court following that meeting. John proposed that the PC
(Producer Consumer) model be used by this new standard, and proceeded to try
to explain to some of us gathered around the table just what he meant by that.
Time and politics passed, and the NMRA tentatively accepted one early
proposal. However, other folks didn’t agree and formed an independent project

known as...
prenica
et

More time and politics passed, and the NMRA finally decided to get out of the
specification writing morass, and turned that job over to the original OpenL.CB

group.

Fast forward to just prior to the Cleveland NMRA National in 2014. The
NMRA went back to the OpenLLCB group and gave them an ultimatum.
Present a proposal to the NMRA or they would declare the project as
dead. This created a new sense of urgency and the basic specifications
were presented to the NMRA in time for the early 2015 board meetings.
Unfortunately in the rush to publish something, some key features were
omitted, so it was late 2015 before we (RR-CirKits, Inc.) felt that the
specifications were mature enough to actually start delivering hardware.
Specifically we wanted our users to have an approved method for
upgrading their products.

With the NMRA approval came their new branded version of the OpenLCB
specifications. They call it LCC. (Layout Command and Control)

One of the first manufacturers of CAN based layout control nodes
was the MERG group. They proposed that the NMRA accept their
protocol. In fact some of the early development work was done
using their hardware.

Another early proposal came from Don Voss. (brother of D1 Voss) It
was Don’s proposal that was originally entertained by the NMRA
as the NMR Anet.

As I previously mentioned, the OpenLLCB group felt that these
protocols were too restrictive to be chosen as the next generation
standard, so they pushed forward with their own ideas and
protocol proposals.

Fortunately there were some in the NMRA that were taking notice.

= One of the first manufacturers of OpenLLCB nodes was Tim Hatch of
TCH Technologies. A couple of Tims products are shown here.

,',"/",4/
///////////,«,”.M

These early boards were essentially OpenLCB replacements for the
32 line Bruce Chubb input and output boards. They were
developed as a way for the developers to run real hardware to
prove out the specifications. Unfortunately they have the same
limitations as their CMRI equivalents in that they are strictly input
or output slaves to a computer program. These boards are no
longer available nor supported by recent JMRI versions.

TCH also manufactured the first CAN bus to USB interface
available for the OpenLCB.

Another early hardware developer was Don Goodman of
Railstars. His OpenLLCB board includes both inputs and
outputs. It is called Io. (named for the Jovian moon)

http://railstars.com/hardware/10/10/
e ET ETER

As far as I know the Railstars Io board 1s no longer available.
However, like the TCH boards, the Io supports just two
producers or consumers per line, so it 1s essentially an I/0
board tied to a computer program.

http://railstars.com/hardware/io/io/

One of the key new concepts in the LCC protocol 1s
that, not only the configuration, but the *decoder
file’ (in JMRI terms) itself should reside 1n the
LCC node. This 1s an important change from the
status quo.

Originally hardware had a fixed purpose. Each
required 1ts own dedicated connections. Lionel

crossing gates flashed with contacts triggered by
the passing wheels. (blink-blink....blink-blink....)

Then some devices were connected to a bus. (or
track) This required assigning addresses or
channels. The usual solution for addressing was
to include a set of jumpers or switches for the
selection. In some cases 1t was a plug with
different component values.

As electronics improved the selection of addresses
was moved 1nto the device code itself. An

example that we are all familiar with i1s modern
DCC mobile decoders.

One of downsides of this new method 1s that our
decoders now need to be configured with a new
(non default) address. That 1tself was automated
by some manufacturers, but it soon became
evident that something more was needed than
simple 1nteractions through a hand held throttle.
Some new decoders currently have 1000 or more
values to configure.

JMRI and other programs have come to the rescue,
but the decoders are now so complex that a
"decoder file’ 1s required for each locomotive and
stored on a computer to help keep track of
changes. The DCC specification does not include
an easy way to read information from a decoder
except very laboriously and slowly over a special
connection. (called a programming track)

This manual address assignment was deemed to be too
slow and inflexible for the new LCC equipment. Two
key changes were required. The first was that any LCC
node could be configured in place on the layout at any
time with no need to access it for jumper changes or
button presses. The second was that any information
required to configure a node should reside in the node
itself, and be available to any configuration tool
connected to the network. Now any node could be
configured in one place and moved to another with all
the information moving with the node itself. This means
not only configuration values but user names and
comments as well.

Another key design choice was that the
manufacturer would assign a node ID during
manufacturing in a manner that prevents any
duplication of addresses.... Ever, anywhere!
(stmilar to Ethernet MAC addresses)

This manufacturer based address assignment has
another unforeseen benefit. Any automatic or user
linking of two LCC nodes no longer needs to
know anything at all about the rest of the layout
in order to prevent unintended conftlicts.

We at RR-CirKits watched all the above history
unfold, and when we figured that the smoke was
mostly cleared, we started the design cycle on a
family of CAN based OpenLLCB boards. (now
NMRA branded as LCC) This 1nitial development
process was delayed due to a missing firmware
upload protocol, but we finally started shipping
hardware to our first customers in January 2016.
(a year after the NMRA accepted the current
protocol)

Our (RR-CirKits, Inc.) current product line
includes just the basic items required to start
investigating the new LCC bus. We chose
our first I/O node to be compatible with our
existing product line of daughter cards. This
allows the user to do basic train detection,
turnout control, and similar functions using
available hardware options.

Power — The LCC CAN bus has two basic options for
power supply to the nodes. The first 1s to supply power to
each node. The second 1s to power the nodes from the
CAN bus cable. Of course a node can also do both.
(some early hardware did that) Because one of the
desirable features of the LCC 1s to eliminate as much
layout wiring as 1s practical, we chose the second option.
We suggest that the user supply power to the bus as
required by using our Power-Point module and/or our
LCC Repeater module.

Termination — The LCC CAN bus 1s much faster than any
existing layout control buses, so it requires termination at
both ends for proper response. The standard allows this
termination to be part of each board, using jumpers or
switch selection, or to be separately provided.

We chose the latter option because we feel that it 1s less
likely to be configured incorrectly. The only place that
the terminators may be easily connected are at each end
of a bus segment, just exactly where they are required,
and no place else.

Cables — The CAN version of LCC was specified to use the
commonly available CATS, CATSE, and CAT6 cables
with RJ45 connectors. The industry standard pin out for
CAN over CATS was chosen. This was done so that the
user could easily purchase or construct his own cables.
The 4 and 6 conductor silver satin cables used by some
other manufacturers are no longer as easy to find as they
were 20 years ago. The two different systems (CAN and
Ethernet) that use these cables supposedly will not suffer
damage if the cables are cross connected accidentally
between networks. Of course neither network will work
in that case.

With the recent addition of an option to place the
DCC rail sync information on an otherwise

unused pair, CAN can now support smart
boosters.

I have referred to the CAN version of LCC.
Remember that the LCC protocol 1s also capable
of being used over different systems, Ethernet,

and Wi-Fi1 also being developed for use by other
LCC developers.

Coming LCC Hardware

= The next node we designed 1s a Signal Driver.
Firmware is under development.

. # R X ~
22N 0 26000

Yo omooloti e

Signal-LCC
True aspect-based signaling
Easy to configure logic
Max. 8 signal masts, 16 LEDs
Up to 32 aspects

Plus 8x I/O lines (like the Tower-LCC)

Coming LCC Hardware

= RailCom Detector under development.
(development image shown)

8-channel
Block occupancy detector
Adjustable sensitivity
Feedback via LCC
Circuit breaker
Adjustable current limit
Turn off staging track
Railcom to determine which
train is on the track
Loco CV readout POM
Staggered block power
turn-on
Auto reverse channel

Smart Detector, Railcom, Circuit Breaker, Reversers

Simple Detector, CT coil based.

Stall Motor Driver (Support for ganged Tortoises, MP1, etc.)
Dual Coil Solenoid Driver.

LocoNet to LCC Gateway. (LCC support for existing products)
Ethernet Links.

Wireless Links.

Throttles

Smart Boosters, Command Stations.

Because all the configuration information as
well as the values, user names, and coments
reside permanently in the nodes themselves,
it 1s easy to use different configuration tools
interchangeably. There 1s no need to
synchronize them externally or move files
around from computer to computer.

This node information is stored 1n the node as a CDI file.
(Configuration Description Information) The CDI 1s in .xml
format, but because it references internal register locations it
1s not advisable to attempt making any changes manually.

Example CDI info as stored in a node:

<?xml version="1.0"?>

<cdi xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance'

xsi:noNamespaceSchemal.ocation=
'http://openlcb.org/schema/cdi/1/1/cdi.xsd>

<identification>

<manufacturer>RR-CirKits</manufacturer>

<model>Signal-LCC</model>

<hardwareVersion>rev-A</hardwareVersion>

<softwareVersion>B-1</softwareVersion>

</identification>

<segment space="253">

The original CDI tool was created as a
WWW.Jmr1.0rg

part of JMRIL.

Select OpenLCB and choose ’Configure Nodes’

B — .0

Window _Help Next open the node you need to configure.

] OpenlLCB Netwo
- [J02.0Lr7FE.6ED5| -
o 2K 02.01.57.00.00.78 S

o= [02.01.57.00.00,54 Window Help
©-[]02.01.57.00.00.16 [C] OpenLCB Network
o= 9 0201.12,FE.BED5

o [supported Protocols 4|
[y Mfg: RR-Cirkits
[y Mod: Tower-LCC
[y Hardware: Rev-D

rdezoszecnrs | OQpen “Supported Protocols’.

¥ — 0 OpenLCB Network Tree
Window Help

[y software: B-3
¢ [302.01.57.00.00.54
o []02.01.57.00.00.16

Then choose ’CDI’ to open the
JMRI CDI tool and read the node.

o []02.01.12.FE.GE.DS
- [CJ02.01.57.00.00.78
% [Supported Protocols

[y Protocolidentification
|__°“| Datagram
[y configuration
|__°“| ProducerConsumer
[y TeachingLearningConfiguration

[y smu
T coi

[} Mfg: RR-Cirkits

[} Mod: Tower-LCC

[]

4|

i

% - 0 Configure 02.01.57.00.00.78

% Identification

Manufacturer: RR-CirKits
Model: Tower-LCC
Hardware Version: rev-D

Software Version: B-3

% Segment: Node Identification
Your user name and description for this node
Node Name

mE

|| Read |M

Node Description

| read | Write

CHANNELS
Each channel controls one input/foutput line.
Channel 1

1o}
Line description

| || Read*\Write |

Output Function
|N0 Function

|v| Read | Write |

Input Function

|Disab|ed |v| Read | writ

Delay

Delay time values for blinks, pulses, debounce.
Interval 1

Delay Time (1-60000).
| | Read | Write

Milliseconds |v| Read | write |
Retrigger
|No |v| Read | Write |

Interval 2
Delay Time (1-60000).
| | Read | Write

|Mi|liseconds|v| Read | Write |
Retrigger
|N0 |v Read | Write |

Commands

Consumer commands.
Event 1
EventiD
When this event occurs,

[00.00.00.00.00.00.00.00] Read | write |

the line state will be changed to.

|N0ne |v| Read | Write

This will open the JMRI
CDI tool window and allow
you to read and write data
to the node. The window
header shows the node ID
that is open and the
Identification shows some
basic data about the node.

The actual data will not
show up unless you choose
to ’Read’ it from the node.
If you make any changes to
the information, then you
must *Write’ the data to
store it into the node.

There 1s a ’Read All’
button at the bottom of the
window, but be forwarned,
it takes a lot of time to read
all of the data in.

Because LCC is an open standard anyone can develop tools for it. One such developer is
Robert Heller of Deepwoods Software. This is part of his model railroad software package.
http://www.deepsoft.com/home/products/modelrailroadsystem/downloadmr/

Run the OpenLCB tool.

File Edit View Options Help If you are using the LCC Buffer-USB

as your interface device, then select
$ - o / ’Grid Connect CAN over USB’ .

Constructor:|Grid Connect CAN over US |

3/devttyACMO =

Node ID:|05:01:01:01:22:00

Select | Cancel |

Open | Cancel |

| Next select the

| 74 example is on

® - o OpenLCB Once you click on ’Open’ a similar window to the one
File Edit View Options Help | you saw in JMRI will open. The first entry is the

> 05:01:01:01:22:00 program connection itself. The other entries are a list
[:57:00:00:78

b 02:01:57-00" of the attached nodes.

[» 02:01:57:00:00:16

As in JMRI, open the node you choose to configure by

y expanding its tree view.

http://www.jmri.org/

Robert’s CDI tool opens a bit 8 C)6) Opentch
differently than JMRI. You need File Edit View Options

to drill down 1n the tree to see b 05:01:01:01:22:00

more information. \sﬂ_ﬂ?mﬂﬂfﬂ
Simple Node Info

Manfacturer: RR-Cirkits
Model: Tower-LCC
Hardware Version: Rey-D

However, because the information
actually 1s stored 1n the node, you

— Protocoels Supported
should see exactly the same data. Simple

Datagram

Software Version: B-3

Memory Configuration

The CDI tool 1s started by clicking Event Exchange

on *CDI’ just as it was in JMRI.\ o o ormation
However, If you missed the LCC CI

Firmware Upgrade Protocol

traffic indicators, there 1s no visual | p 02:01:57:00:00:54

feedback that anything has
happened, and it may take a long
time before the CDI window loads
and finally opens. Resist the
temptation to click it again.

Be patient and you will be awarded
with a usable presentation. (Similar
to the new JMRI view)

Again the Node ID is found at the
top of the window.

Node Identification follows.

Next is any Name and Description
that you have given to the node. (b
sure to click on ’Read’ to see it:

The key difference is that the data is
presented in a tab selected format.
Note: the JMRI developers have
created a similar improvement.

In this example'we have selecte
"CHANNELS’ and ’Channel 1°.

In like manner, any repeated similar
items are presented as tab choices.

% - 0 CDI Configuration Tool for Node ID 02:01:57:00:00:78
Eile Edit /

o]

—ldentification
Manufacturer|RR-CirKits
odel Tower-LCC

Hardwareg/ersion|rev-D
Software Version B-3

No Ident’rﬁcatiun]
ur user name and description for this node

—MNode Name

Read Write

—Node Descripti

Read Write

ELS | LOGIC | TRACK CIRCUITS |
channel controls one inputfoutput line.
hannel 1 | channel 2 | Channel 3 | Channel 4 | Channel 5 | Channel 6 | Channel 7 | [

—Ling description
Read Write ‘
Output Function
WMD Function =
Read Write ‘
Input Function
Disabled -l
Read Write ‘
—Delay
Delay time values for blinks, pulses, debounce.
Interval 1 | Interval 2 |
lay Time f¥-60000).
0 =
Read | Write |
illiseconds =
Read | Write |

http://www.deepsoft.com/home/products/modelrailroadsystem/downloadmr/

® - O CDIConfiguration Tool for Node ID 02:01:57:00:00:78

File Edit
We have now entered a user

' CHANNELS] LOGIC | TRACK CIRCUITS |

comment fOI' the hne. Each channel controls one inputfoutput line.
Channel 1 | channel 2 | Channel 3 | Channel 4 | Channel 5 | Channel 6 | Channel 7 | m
1/O

—— "Mst test input line

Be sure to click on *Write’ to save Line description ‘

: sttt mpetine
the ttem. Read | = ——— p Write

Output Function
Normally you will need to set the Mg ﬂ‘

use the line as an Input.

Read Write
Output as ’No Function’ in o 0 rnput =

A list select arrow will present you
with valid choices for some items.

In this example we have chosen the

input to be ’Active Lo’. It responds Read write
as ’On’ when being pulled low. |M“ft”5'9” =
(called negative logic) This is usual Read | write | ‘

for many detectors and push buttons | Commands

Consumer commands.

that turn “on’ by switching to the Event1 | Event2 | Event3 | Event 4 | Event5 | Event6 |

When this event occurs,
common ground' 00.00.00.00.00.00.00.00

Read Write

the line state will be changed to.
[None B
|7 Read | Write | ‘
dindiratinne

80

[

X

0 . . ’ ’ .
An input line is used to "Produce ® - o0 CDI Configuration Tool for Node ID 02:01:57:00:00:78

-

messages, so scroll down to the File Edit ‘
"Indications’ section and pick the first — ' ' I
Indications
Event. Producer commands.
Eventl | Event2 | Event3 | Event4 | Event5 | Event6 |

linput On ~|

Select when the event is sent. For this firs Read Write
9 . - LT ’ this event will be sent.
event it will when the input 1s ’On’. (low 02.01.57.00.00.76.00.06
per our initial setting) . Read Write J
Read All |

For the event number you can either copy ~ &o

an event into the box from someplace else, .
or else click on ’Read’ to get a new event.
r @& - O CDI Configuration Tool For Node ID 02:01:57:00:00:78
Now select ’Event 2’ and enter the data File Edit ‘
for the ’Input Off” event. —— ' M=
Producer commands.

. .. Event1 Event2 | Event3 | Event4 | Event5 | Event6 |
For simple setups the remaining events input OFf 2
will be unused. Our button or detector or Read Write

. . . this event will be sent.

whatever 1s connected to the line will now
send 02.01.57.00.00.78.00.06 when J
pressed (on) and 02.01.57.00.00.78.00.07 Read Al -

when released. (off) 80

In like manner outputs (Consumers) may be configured to
respond to events. These Events may come from a JMRI
program, other inputs, or even logic statements.

Current configuration tools are still under development. One
design target 1s to eliminate any reference to the actual
EventID numbers, and simply use the users own names for
items.

I am not optimistic about seeing that in my lifetime, but once a
line 1s configured you really can 1ignore the details of each
EventID because you will not need to worry about any
duplication, and you do not need to know them ahead of time
to properly select the hardware like you do on existing
networks. In LCC the hardware either offers you a new
unused Event, or you may configure it to respond to your
own already defined Events. (Just copy your EventID to it)

Other Layout Animation

Signaling is normally the most complex animation applied to a model
railroad layout.

Crossing gates and flashers with or without sound 1s another closely
related animation that is often attempted by modelers. Commercial gate
animators have various levels of sophistication, from simple on — off,
control to reasonably accurate operation. I have seen designers twist
themselves into knots trying to figure out how to do it accurately in
both directions. However if you think in terms of Events it is actually
very simple. Define two blocks. The first covers the entire gate
Approach area. The second covers just the highway portion. We call it
the Island.

The Logic:

1. Approach clear AND Island clear = gates up (requires memory of the
two events plus AND logic)

2. Approach occupied event = gates down

3. Island occupied event = gates down

4. Island clear event = gates up

Traffic signals. Simple flashers to full four or six cycle control.
Building lighting and signage.

Day — Night lighting.

Street and parking lot lighting.

Operating bridge spans.

Warehouse doors.

Mine skips.

All of the above could be individual devices, or centrally controlled for
even more realism. Building lights could follow room lighting, bright
in the evening, off late at night, then on again early in the morning.
Traffic signals go to flashing mode late at night. Warehouse doors open
when trains arrive. Etc.

Acknowledgements

Key OpenlLCB Contributors: Bob Jacobsen, Alex
Shepherd, David Harris, Stuart Baker, Balazs Racz, Jim
Kueneman, Don Goodman-Wilson, John Plocher

Developer Group

10 to 15 actively working on code at any time
25 to 50 regular contributors and supporters
Many of the same people as supporting JMRI

User Group

Started November 2009
July 2016 we have 226 addresses

NMRA liaison: Stephen Priest
NMRA w.g. chairman: Karl Kobel

Info

Yahoo Users Group

openlcb@yahoogroups.com
LayoutCommandControl@yahoogroups.com

Useful Links
nttp://openlicb.org

nttp://openicb.com

nttp://nmra.org, choose S&RP scroll to 9.7

Qpent.GB

o
£
=
=
=,

Dick Bronson
CEO

pecializing in Affordat

7918 Royal Ct
Waxhaw, NC 28173
www rr-cirkits.com

e Ele

RR-CirKits, inc.

cironics for

Phone: 1-704-843-3769
Fax: 1-704-243-4310
dick@rr-cirkits.com

power an
termina

ing i

selal

[RSNO!

db

Affordable Ele

Phone: 1-704-843-376

lion

computer
interface

IrKits

Dick Bronson

CEO
RR-CirKits, Inc.
Specializing in Affordable Electronics for Model Railroad
7918 Royal Ct Phone: 1-704-843-3769
Waxhaw, N 78 Fax: 1-704-243-4310
www rr-cirkits.com dick@rr-cirkits.com

N LCC Smart|
IfKits Node

e
i
[T
[

sl 0-1 (2
ﬂ iTﬂuer—.LCC-@
Cant)
szt 0 S

v

Dick Bronson
9
N &
o

CEO

RR-CirKits, Inc.
Specializing in Affordable Electronics for Model Railroad s Q'_
[]
N &)
7918 Royal Ct Phone: 1-704-843-3769 F I
Waxhaw, NC 28173 Fax: 1-704-243-4310 1 ‘f:
dick@rr-cirkits.com 5 o0 g

L]

~

www. rr-cirkits.com

selal

(2570

all existing

Dick Brons
CEO
RR-CirKits, Inc.
ali2 A\ffordable Electronics for Model Railroad
7918 Royal Ct Phone: 1-704-843-3769
Waxhaw, NC 28173 Fax: 1-704-243-4310

dick@rr-cirkits.com

Wo r k www. rr-cirkits.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	RR-CirKits
	Slide 79
	Slide 80
	Slide 81
	Slide 82

